Cover image for Biomechanical Systems Technology (A 4-Volume Set) : (4) General Anatomy.
Biomechanical Systems Technology (A 4-Volume Set) : (4) General Anatomy.
Title:
Biomechanical Systems Technology (A 4-Volume Set) : (4) General Anatomy.
Author:
Leondes, Cornelius T.
ISBN:
9789812771391
Personal Author:
Physical Description:
1 online resource (343 pages)
Contents:
CONTENTS -- Preface -- Chapter 1 Acoustical Signals of Biomechanical Systems E. Kaniusas -- 1. Introduction -- 2. Body Sounds - An Overview -- 2.1. Heart sounds -- 2.2. Lung sounds -- 2.3. Snoring sounds -- 3. Mutual Interrelations of Body Sounds -- 4. Transmission of Body Sounds -- 4.1. Propagation of sounds -- 4.1.1. General issues -- 4.1.2. Spreading of sounds -- 4.1.3. Frequency dependant propagation -- 4.2. Attenuation of sounds -- 4.2.1. Volume effects -- 4.2.2. Inhomogeneity effects -- 4.3. Coupling of sounds -- 5. Spatial Distribution of Body Sounds -- 6. Concluding Remarks -- Acknowledgments -- References -- Chapter 2 Modeling Techniques for Liver Tissue Properties and their Application in Surgical Treatment of Liver Cancer J.-M. Schwartz, D. Laurendeau, M. Denninger, D. Rancourt and C. Simo -- 1. Soft Tissue Modeling -- 1.1. Earliest models -- 1.2. Spring-mass models -- 1.3. Boundary element methods -- 1.4. Finite element methods -- 1.5. Linear elastic tensor-mass model -- 2. Non-linear Modeling -- 2.1. Non-linear finite element models -- 2.2. Non-linear extensions of the tensor-mass model -- 2.2.1. Principle -- 2.2.2. Measure of deformation -- 2.2.3. Integration of geometrical non-linearity -- 2.2.4. Integration of viscoelasticity -- 3. Implementation and Performance -- 3.1. Data structure -- 3.2. Algorithm -- 3.3. Computational speed -- 3.3.1. Load of di.erent mechanical models -- 3.3.2. Dependence on mesh size -- 3.3.3. Dynamic adaptation -- 3.4. Implementation of the model on a distributed computer architecture -- 3.4.1. Principle -- 3.4.2. Performance evaluation -- 3.4.3. Implementation strategies -- 3.5. Numerical stability -- 4. Experimental Measurements and Validation -- 4.1. Mechanical setup -- 4.2. Experimental results -- 4.3. Comparisons with simulation models -- 4.3.1. Physically non-linear model.

4.3.2. Full non-linear model -- 4.3.3. Limitations -- 5. Simulation of Topological Changes -- 5.1. Overview -- 5.2. Algorithm -- 5.3. Simulation approach -- 6. Conclusion -- Acknowledgments -- References -- Chapter 3 A Survey of Biomechanical Modeling of the Brain for Intra-Surgical Displacement Estimation and Medical Simulation M. A. Audette, M. Miga, J. Nemes, K. Chinzei and T. M. Peters -- 1. Introduction -- 2. Preliminaries -- 2.1. Biomechanics -- 2.1.1. Elastic solid models -- 2.1.2. Fluid models -- 2.2. Numerical estimation -- 2.2.1. Finite element modeling -- 2.2.2. Toward constitutively realistic surgical simulation: Multi-rate FE and other e.ciencies -- 2.2.3. Mass-spring and mass-tensor systems -- 2.3. Cutting models -- 3. Finite Element Modeling of the Brain -- 3.1. Solid brain models -- 3.1.1. Non-linear solid continua: Hyper-elastic and Viscoelastic solids -- 3.1.2. Impact response FE models -- 3.1.3. Early rheological studies and strain models -- 3.1.4. Rheological studies and FE models for medical applications -- 4. Biphasic Brain Models -- 4.1. Biomechanics of the cranial cavity featuring solid and fluid components -- 4.2. Solid-liquid continua: Poro-elastic and mixture continua, with related FE models -- 5. Summary -- References -- Chapter 4 Techniques and Applications of Robust Nonrigid Brain Registration O. Clatz, H. Delingette, N. Archip, I.-F. Talos, A. J. Golby, P. Black, R. Kikinis, F. A. Jolesz, N. Ayache and S. K. Warfield -- 1. Introduction -- 1.1. Image-guided neurosurgery -- 1.2. Nonrigid registration for image-guided surgery -- 1.2.1. Modeling the intraoperative deformation -- 1.2.2. Displacement-based nonrigid registration -- 2. Method -- 2.1. Preoperative MR image treatment -- 2.1.1. Segmentation -- 2.1.2. Rigid registration -- 2.1.3. Biomechanical model -- 2.1.4. Block selection.

2.1.5. Computation of the structure tensor -- 2.2. Block-matching algorithm -- 2.3. Formulation of the problem: approximation versus interpolation -- 2.3.1. Approximation -- 2.3.2. Interpolation -- 2.4. Robust gradual transformation estimate -- 2.4.1. Formulation -- 2.4.2. Parameter setting -- 2.4.3. Implementation issues and time constraint -- 3. Experiments -- 4. Conclusion -- References -- Chapter 5 Optical Imaging in Cerebral Hemodynamics and Pathophysiology: Techniques and Applications Q. Luo, S. Chen, P. Li and S. Zeng -- 1. Introduction -- 2. Theory -- 2.1. Spectroscopic imaging -- 2.1.1. Absorption spectrum of oxyhemoglobin and deoxyhemoglobin -- 2.1.2. Physical model for the spectroscopic data analysis -- 2.2. Laser speckle flowmetry -- 2.2.1. Introduction of laser speckle phenomenon -- 2.2.2. Laser speckle contrast analysis for full field blood flow mapping -- 3. Instrumentation -- 3.1. Multi-wavelength reflectance imaging -- 3.2. Laser speckle imaging -- 3.3. Combination of multi-wavelength reflectance imaging and laser speckle imaging -- 4. Applications -- 4.1. Spatiotemporal quantification of cerebral hemodynamic and metabolism change during functional activation -- 4.2. Cortical spreading depression -- 4.3. Focal cerebral ischemia -- Acknowledgments -- References -- Chapter 6 The Auditory Brainstem Implant H. Takahashi, M. Nakao and K. Kaga -- 1. Clinical Study -- 1.1. History and system description -- 1.2. Implantation -- 1.3. Rehabilitation -- 2. Animal Study -- 2.1. Overview -- 2.1.1. Safety viewpoint -- 2.1.2. Functional viewpoint -- 2.2. Animal model of ABI -- 2.2.1. Auditory cortex of rat -- 2.2.2. Auditory evoked potentials -- 2.2.3. Surface microelectrode array -- 2.2.4. Spike microelectrode array -- 2.2.5. Animal preparation -- 2.2.6. Recording and test stimuli -- 2.3. Physiological proof of ABI feasibility.

2.3.1. Tone-evoked potentials in the auditory cortex -- 2.3.2. Microstimulation of the cochlear nucleus -- 3. Discussion -- 3.1. Cortical mapping of auditory evoked potential -- 3.2. Functional microstimulation in the cochlear nucleus -- 3.2.1. Feasibility of ABI -- 3.2.2. Implications for developing future ABI -- 4. Summary -- References -- Chapter 7 Spectral Analysis Techniques in the Detection of Coronary Artery Stenosis E. D. Übeyli and ˙ I. Güler -- 1. Introduction -- 2. Data Acquisition from Coronary Arteries -- 2.1. Continuous wave Doppler -- 2.2. Pulsed wave Doppler -- 3. Spectral Analysis Techniques -- 3.1. Nonparametric methods -- 3.1.1. Periodogram method -- 3.1.2. Correlogram method -- 3.1.3. Blackman-Tukey method -- 3.1.4. Bartlett method -- 3.1.5. Welch method -- 3.2. Parametric methods -- 3.2.1. AR method -- 3.2.1.1. Yule-Walker method -- 3.2.1.2. Covariance method -- 3.2.1.3. Modified covariance method -- 3.2.1.4. Burg method -- 3.2.1.5. Least squares method -- 3.2.2. MA method -- 3.2.3. ARMA method -- 3.2.4. Selection of AR, MA, and ARMA model orders -- 3.3. Time-frequency methods -- 3.3.1. Short-time Fourier transform -- 3.3.2. Wigner-Ville distribution -- 3.3.3. Wavelet transform -- 3.4. Eigenvector methods -- 3.4.1. Pisarenko method -- 3.4.2. MUSIC method -- 3.4.3. Minimum-norm method -- 4. Medical Decision Support Systems -- 5. Feature Extraction/Selection -- 6. Review of Different Decision Support Systems -- 6.1. Multilayer perceptron neural networks -- 6.2. Combined neural network models -- 6.3. Mixture of experts -- 6.4. Modified mixture of experts -- 6.5. Probabilistic neural network -- 6.6. Recurrent neural networks -- 6.7. Support vector machine -- 7. Experiments for Implementation of Decision Support Systems -- 8. Measuring Performance of Decision Support Systems -- 9. Discussion and Analysis -- 10. Conclusion.

References -- Chapter 8 Techniques in the Contour Detection of Kidneys and their Applications M. Martin-Fernandez, L. Cordero-Grande, E. Munoz-Moreno and C. Alberola-Lopez -- 1. Introduction -- 2. Contour Operations -- 2.1. Continuous contours -- 2.2. Discrete contours -- 2.2.1. Definition -- 2.2.2. Interpolation and uniform sampling -- 2.2.3. Discrete derivatives -- 2.2.4. Perimeter and area -- 2.2.5. Center and inertia matrix -- 2.2.6. Affine transformations -- 2.2.7. Contour fitting -- 2.3. Contour homogenizations -- 2.4. Manual template adjustment -- 2.4.1. Procedure description -- 2.4.2. Technical details about the rotations -- 2.5. Discussion -- 3. Solution Based on Shape Priors -- 3.1. Shape modeling -- 3.2. Image information -- 3.3. The algorithm -- 3.4. Discussion -- 4. Solution Based on Active Contours and Markov Random Fields -- 4.1. Active contours -- 4.2. Markov random fields -- 4.3. State of the art -- 4.4. The model -- 4.4.1. Prior model of the deformation .eld -- 4.4.2. Likelihood function -- 4.4.3. Complete model -- 4.5. Implementation details -- 4.6. Validation -- 4.7. Experimental validation results -- 4.8. 3D extension -- 4.9. Unsupervised parameter estimation -- 4.10. 3D parameter estimation and validation -- 5. Conclusions -- References.
Abstract:
Because of rapid developments in computer technology and computational techniques, advances in a wide spectrum of technologies, coupled with cross-disciplinary pursuits between technology and its application to human body processes, the field of biomechanics continues to evolve. Many areas of significant progress include dynamics of musculoskeletal systems, mechanics of hard and soft tissues, mechanics of bone remodeling, mechanics of blood and air flow, flow-prosthesis interfaces, mechanics of impact, dynamics of man-machine interaction, and more. Thus, the great breadth and significance of the field in the international scene require a well integrated set of volumes to provide a complete coverage of the exciting subject of biomechanical systems technology. World-renowned contributors tackle the latest technologies in an in-depth and readable manner. -->. Sample Chapter(s). Chapter 1: Acoustical Signals of Biomechanical Systems (720k). Contents: Acoustical Signals of Biomechanical Systems (E Kaniusas); The Auditory Brainstem Implant (H Takahashi et al.); Techniques in the Contour Detection of Kidneys and Their Applications (M Martin-Fernandez et al.); and many other papers. Readership: Academics, researchers and postgraduate students in anatomy, cardiology, orthopaedic, biomechanics and surgery.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: