Cover image for Optical Turbulence : Astronomy Meets Meteorology - Proceedings of the Optical Turbulence Characterization for Astronomical Applications.
Optical Turbulence : Astronomy Meets Meteorology - Proceedings of the Optical Turbulence Characterization for Astronomical Applications.
Title:
Optical Turbulence : Astronomy Meets Meteorology - Proceedings of the Optical Turbulence Characterization for Astronomical Applications.
Author:
Masciadri, Elena.
ISBN:
9781848164864
Personal Author:
Physical Description:
1 online resource (415 pages)
Contents:
CONTENTS -- Preface -- Motivations -- Conference Results -- Conference Group Picture -- Organizers -- In Memory of A. Erasmus -- Scientific Program -- Optical Turbulence in High Angular Resolution Techniques in Astronomy J . M. Beckers -- 1. Introduction -- 2.1. Average Atmosphere -- 2.2. The Turbulent Atmosphere -- 2.3. Optical Turbulence under Special Conditions -- 3. Adaptive Optics -- 3.1. Wavefront Sensing -- 3.2. Laser Beacons or Guide Stars -- 3.3. Multi-Conjugate Adaptive Optics -- 4. Astronomical Interferometry -- 5. Conclusion -- References -- An Astronomer's View of Optical Turbulence R. Racine -- 1. Introduction -- 2. Refractive Properties of the Turbulent Atmosphere -- 2. Futility -- 3. Utility and Challenges -- 3.1. Large and Rapid Variability with Time -- 3.2. Difference between Sub-Sites -- 3.3. "Facility Seeing" -- 4. Dreams -- 5. Confronting Reality -- Acknowledgments -- References -- Using the Scintillation of Extended Objects to Probe the Lower Atmosphere J. M. Beckers -- Synopsis -- References -- Optical Turbulence Profiles at CTIO from a 12-element Lunar Scintillometer P. Hickson, T. Pfrommer and A. P. Crotts -- 1. Introduction -- 2. Observations -- 3. Analysis -- 4. Results -- Acknowledgments -- References -- HVR-GS at Mt. Graham: Optical Turbulence Vertical Distribution with Standard and High Resolution E. Masciadri, J. Stoesz, F. Lascaux and S. Hagelin -- 1. Optical Turbulence Characterization at Mt. Graham: Scientific Motivations -- 2. GS and HVR-GS Techniques -- 3. Astroclimatic Parameters: Main Results -- 4. AO Applications: LBT-LGS System ARGOS -- 5. HVR-GS Vertical Distribution for h 1 km -- 6. Conclusions -- Acknowledgments -- References -- Profilometry for the Lower Terrestrial Atmosphere J. Borgnino, A. Berdja, A. Ziad and J. Maire -- 1. Introduction.

2. Wavefront Analysis : Observation of AA Fluctuations in the Pupil Plane17 -- 3. AA Statistics -- 3.1. Transverse Spatial Covariance of AA Fluctuations -- 3.2. Transverse Spatio-Angular Covariance of AA Fluctuations -- 4. Optical Turbulence Profiler -- 4.1. Principle -- 4.2. A Differential Profiler -- 5. Conclusion -- References -- SLODAR Turbulence Monitors R. W. Wilson, T. Butterley and J. Osborn -- 1. Introduction -- 2. Current SLODAR Profilers -- 3. Sample Results -- 3.1. Cerro Paranal -- 3.2. Mauna Kea -- 4. Comparison with MASS and DIMM -- 5. Summary and the Future -- Acknowledgments -- References -- High Resolution SLODAR Measurements on Mauna Kea T. Butterley, R. W. Wilson, M. R. Chun, R. Avila and J.-L. Aviles -- 1. Introduction -- 2. SLODAR Instrument -- 3. Data Analysis -- 4. Results -- 5. Conclusion -- Acknowledgements -- References -- Vertical Turbulence Profiles at Canary Islands Astronomical Sites B. Garcia-Lorenzo, J. J. Fuensalida, J. Castro-Almazan and M. A. C. Rodriguez-Hernandez -- 1. Introduction -- 2. The Instruments -- 3. Observations and Data -- 4. Statistical View of the Seasonal Evolution of the Turbulence -- 5. Summary and Conclusions -- Acknowledgments -- References -- C2n Profile from Shack-Hartmann Data: First Steps for Co-slidar Data Processing C. Robert, N. V edrenne, V. Michau and J.-M. Conan -- 1. Motivation -- 2. Problem Statement with SHWFS Pseudo-Measurements -- 3. C2n Profile Estimation Method -- 4. Numerical Experiment for Validation of C2n Estimation -- 5. Start Up of a SHWFS C2n Profiler in Astronomy -- 6. Conclusion and Perspectives -- Acknowledgements -- References -- How We Can Understand the Antarctic Atmosphere? J. W. V. Storey, M. C. B. Ashley and J. S. Lawrence -- 1. Introduction -- 2. Techniques to Measure the Free Atmosphere -- 2.1. DIMM -- 2.2. Balloons.

2.3. Double-Star Scintillation Techniques -- 2.4. MASS -- 2.5. Modelling -- 3. Techniques to Measure the Boundary Layer -- 3.1. Tower Microthermals -- 3.2. SHABAR -- 3.3. Acoustic Radar -- 4. The Future -- Acknowledgments -- References -- TMT Site Testing Survey: Instruments, Methods and Operations R. L. Riddle, W. Skidmore, T. Travouillon, M. Schöck and S. Els -- 1. The Candidate Sites -- 2. Site Testing Instrument Suite -- 3. Operations -- 4. Results -- 5. Conclusion -- Acknowledgements -- References -- TMT Site Testing Survey: Calibration and Results M. Schöck, S. Els, R. Riddle, W. Skidmore and T. Travouillon -- 1. TMT Site Testing -- 2. Instrument Calibrations and Results Verifications -- 3. TMT Site Selection Top-Level Results -- 3.1. Data Analysis Principles and Lessons Learned -- 3.2. Some Results from the Sites -- 4. Summary and Conclusions -- Acknowledgments -- References -- Wavefront Characterization Campaign at Paranal Using GSM, MOSP, DIMM-MASS, LUSCI and SCIDAR W. Dali Ali, A. Ziad, A. Berdja, J. Maire, J. Borgnino, M. Sarazin, G. Lombardi, J. Navarrete, H. V. Ramio, M. R -- 1. Introduction -- 2. Instruments Participating to the 2007 Paranal Campaign -- 2.1. Cute-SCIDAR: Scintillation Detection and Ranging -- 2.2. ESO-DIMM (Differential Image Motion Monitor) -- 2.3. GSM (Generalized Seeing Monitor) -- 2.4. LuSci (Lunar Scintillometer) -- 2.5. MASS (Multi Aperture Scintillation Sensor) -- 2.6. MOSP (Monitor of Outer Scale Profile) -- 2.7. NAOS/AO (Nasmyth Adaptive Optics System) -- 2.8. VLT Interferometer using AMBER (Astronomical Multi-BEam combineR) -- 2.9. Meteorological Station -- 3. Conditions of Campaign Observations -- 4. Presentation of the Campaign Results -- 4.1. Outer Scale Measurements -- 4.2. Seeing Measurements -- 4.3. Coherence Time Measurements -- 4.4. Isoplanatic Angle Measurements.

5. Summary of the Paranal Campaign Results -- 6. Conclusion -- Acknowledgments -- References -- Turbulence Outer Scale for High Angular Resolution Techniques A. Ziad, J. Borgnino, J. Maire, A. Berdja and F. Martin -- 1. Introduction -- 2. Which Outer Scale for HAR Techniques? -- 3. Instruments for Wavefront Outer Scale Estimation -- 4. Conclusions -- References -- Retrieving High Layer Atmospheric Turbulence Statistics on E-ELT Scales C. Arcidiacono, R. Ragazzoni, J. Farinato, G. Gentile, A. Baruffolo, M. Dima, C. Metti, V. Viotto and E. Diolaiti -- 1. Introduction -- 2. Wavefront Sensor Concept -- 3. Laboratory Experiment -- 4. Simulations -- 5. System Overview -- References -- The Paranal Surface Layer J. Melnick, M. Sarazin, G.-L. Lombardi and J. Navarrete -- 1. Basic Facts about the Paranal Surface Layer -- 2. The Wind-Rose of Paranal -- 3. The Inconvenient Discrepancy -- 3.1. Turbulence -- 4. Going with the Flow -- 4.1. Seeing is Believing -- 5. Conclusions -- References -- The Mesoscale Meteorological Models Meso-NH and AROME C. Lac, T. Maric, J. P. Pinty, J. Cuxart, V. Masson and P. Tulet -- 1. Introduction -- 2. General Consideration on Meteorological Models -- 3. The Meso-NH Model and the Externalized Surface -- 3.1. Dynamics -- 3.2. Turbulence -- 3.2.1. The turbulence scheme -- 3.2.2. Diurnal cycle of the ABL -- 3.2.3. Simulations of stable ABL -- 3.2.4. Simulation of dry convective ABL -- 3.3. Surface Coupling -- 4. The AROME Model -- 5. Conclusion -- References -- Introduction to Data Assimilation in Meteorology P. Brousseau and L. Auger -- 1. Introduction -- 2. General Consideration on Meteorological Models -- 3. The Meso-NH Model and the Externalized Surface -- 2. General Ideas on Data Assimilation -- 2.1. Principle -- 2.2. The Linear Statistic Estimation -- 2.3. The Variational Formulation -- 3. Different Kinds of Observation.

4. A New Meso-Scale Assimilation System -- 4.1. AROME Data Assimilation System -- 4.2. General Benefit of the AROME Analysis -- 4.3. An Assimilation Experiment -- 5. Conclusion -- References -- Adaptation of Force Restore ISBA Model to Polar Conditions P. Le Moigne, J. Noilhan, E. Masciadri, F. Lascaux and I. Pietroni -- 1. Introduction -- 2. Observations -- 3. Numerical Aspects -- 3.1. ISBA Model -- 3.1.1. Surface characteristics -- 3.1.2. Model equation -- 3.2. Calibration -- 4. Results -- 4.1. Turbulent Fluxes -- 5. Conclusion -- References -- Mesoscale NWP Over Antarctica: AMPS and Support for Ground-Based Astronomy J. G. Powers -- 1. Background -- 2. The Antarctic Mesoscale Prediction System -- 3. Possibilities for Astronomy and Related Issues -- 4. Summary -- References -- ForOT: A New Approach for the Optical Turbulence Studies Applied to the Ground-based Astronomy E. Masciadri, F. Lascaux, S. Hagelin and J. Stoesz -- 1. Optical Turbulence Modelling in Astronomy -- 2. Optical Turbulence Parameterization -- 3. OT Simulations: Main Results -- 4. ForOT: Scientific and Technologic Goals -- 5. ForOT: Main Results -- 6. Conclusion -- Acknowledgments -- References -- The Mauna Kea Weather Center: A Case for Custom Seeing Forecasts T. Cherubini, S. Businger and R. Lyman -- 1. Introduction -- 2. Overview of Hardware and Data Flow -- 3. Overview of Mesoscale Model -- 4. The Optical Turbulence Algorithm -- 5. A Case Study -- 5.1. Preliminary Results from the Sensitivity Study to Vertical Resolution -- 6. "The MKWC Daily Forecast for Optical Turbulence" or "Learning from the Every Day Experience: the Human Added Value" -- 7. Conclusions and Future Work -- Acknowledgments -- References -- Numerical Simulations of the Wintertime Optical Turbulence in Antarctica with the Mesoscale Model Meso-NH F. Lascaux, E. Masciadri, S. Hagelin and J. Stoesz.

1. Introduction.
Abstract:
This book collects most of the talks and poster presentations presented at the "Optical Turbulence - Astronomy meets Meteorology" international conference held on 15-18 September, 2008 at Nymphes Bay, Alghero, Sardinia, Italy. The meeting aimed to deal with one of the major causes of wavefront perturbations limiting the astronomical high-angular-resolution observations from the ground. The uniqueness of this meeting has been the effort to attack this topic in a synergic and multidisciplinary approach promoting constructive discussions between the actors of this science - the astronomers, meteorologists, physicists of the atmosphere and the experts in adaptive optics and interferometry techniques whose main goal is to correct, in real-time, the wavefront perturbations induced by atmospheric turbulence to restore at the telescope foci the best available image quality. Sample Chapter(s). Chapter 1: Optical Turbulence in High Angular Resolution Techniques in Astronomy (494 KB). Contents: Optical Turbulence in High Angular Resolution Techniques in Astronomy (J M Beckers); Optical Turbulence Profiles at CTIO from a 12-Element Lunar Scintillometer (P Hickson et al.); High Resolution SLODAR Measurements on Mauna Kea (T Butterley et al.); How We Can Understand the Antarctic Atmospheric? (J W V Storey et al.); The Paranal Surface Layar (J Melnick et al.); Introduction to Data Assimilation in Meteorology (P Brousseau … L Auger); The Mauna Kea Weather Center: A Case for Custom Seeing Forecasts (T Cherubini et al.); Dealing with Turbulence: MCAO Experience and Beyond (R Ragazzoni et al.); Future-Look Science Operations for the LBT (R F Green); Surface Layer SLODAR (J Osborn et al.); and other papers. Readership: Advanced undergraduates and graduate students, and physicists working in the field of astronomy.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: