Cover image for Introduction to Digital Signal Processing : Computer Musically Speaking.
Introduction to Digital Signal Processing : Computer Musically Speaking.
Title:
Introduction to Digital Signal Processing : Computer Musically Speaking.
Author:
Park, Tae Hong.
ISBN:
9789812790286
Personal Author:
Physical Description:
1 online resource (450 pages)
Contents:
CONTENTS -- Preface -- Acknowledgements -- About the Book Cover Design -- 1. Acoustics, Hearing Limitations, and Sampling -- 1 Introduction -- 2 The Sine Tone -- 3 Human Hearing and Its Limitations -- 3.1 Duration -- 3.2 Pitch -- 3.3 Amplitude and sound levels -- 3.3.1 Sound intensity level (SIL) -- 3.3.2 Sound pressure level (SPL) -- 3.3.3 Just noticeable di.erence (JND) -- 3.3.4 Equal loudness curve -- 3.4 Auditory masking -- 4 Sampling: The Art of Being Discrete -- 4.1 Sampling theorem -- 4.2 Aliasing -- 5 Quantization and Pulse Code Modulation (PCM) -- 5.1 SNR and QSNR -- 6 DC Component -- 7 Distortion and SquareWaves -- 7.1 Dithering -- 8 Musical Examples -- References and Further Reading -- 2. Time-Domain Signal Processing I -- 1 Introduction -- 2 Amplitude Envelope and ADSR -- 3 Wavetable Synthesis -- 4 Windowing, RMS, and Amplitude Envelope -- 4.1 Windowing:More details -- 4.2 RMS and amplitude envelope -- 5 Time-Domain Fundamental Frequency Computation -- 5.1 Zero-crossing rate -- 5.2 Autocorrelation -- 5.3 Cross-correlation -- 6 Sample Rate Conversion -- 6.1 Up-sampling -- 6.2 Down-sampling -- 7 Overlap and Add (OLA) -- 7.1 OLA: Problems and solutions -- 8 Musical Examples -- References and Further Reading -- 3. Time-Domain Processes II -- 1 Introduction -- 2 Granular Synthesis -- 2.1 Basic granular synthesis parameters -- 2.2 Asynchronous granular synthesis -- 2.3 Pitch shifting and time stretching/compression -- 2.4 Sound morphing with granular synthesis -- 3 Amplitude Distortion and Waveshaping -- 3.1 Dynamic compressor -- 3.2 Distortion -- 3.3 Dynamic expander -- 3.4 Tape saturation -- 3.5 Waveshaping synthesis -- 3.5.1 Chebychev polynomials of the 1st kind -- 4 Some Familiar Time-Domain DSP Effects -- 4.1 Equal power panning -- 4.2 Delays -- 4.2.1 Echo, chorus, and flanging -- 5 Musical Examples -- References and Further Reading.

4. Sine Waves -- 1 Introduction -- 2 Sinusoids Revisited -- 3 Imaginary, Complex Numbers, and Euler's Formula -- 3.1 Euler's formula -- 4 Sinusoidal Modulation Techniques I: Amplitude -- 4.1 Beating -- 4.2 Amplitude modulation and ring modulation -- 4.3 Amplitude modulation (AM) -- 4.4 Ring modulation -- 4.4.1 Ring modulation with complex signals -- 5 Sinusoidal Modulation Techniques II: Frequency -- 5.1 FM: Sidebands and the Bessel function -- 5.2 Modulation index -- 5.3 General topics in FM control parameters -- 6 Musical Examples -- References and Further Reading -- 5. Linear Time-Invariant Systems -- 1 Introduction -- 2 Difference Equations: Starting with the Moving Average Algorithm -- 2.1 Causality -- 2.2 Difference equations: General form -- 3 Linear-Time Invariant (LTI) Systems -- 3.1 Linearity property: Scalability and superposition -- 3.2 Time-invariance property: Time-shift invariance -- 3.3 Importance of LTI systems in DSP -- 4 Impulse Response -- 4.1 Finite impulse response (FIR) and infinite impulse response (IIR) -- 4.2 Stability and IIR systems -- 5 Convolution -- 5.1 Convolution "Need to Knows" -- 6 System Diagrams and Digital Building Blocks -- 7 Musical Examples -- 6. Frequency Response -- 1 Introduction -- 2 The Frequency Response -- 2.1 Characteristics and properties of H(ejθ) -- 2.1.1 Frequency range and Nyquist revisited -- 2.1.2 H(ejθ) and periodicity property -- 2.1.3 Symmetry -- 2.2 More stuff on the frequency response -- 3 Phase Response and Phase Distortion -- 3.1 Phase delay -- 3.2 Linearity and phase -- 3.3 Phase response and continuous phase -- 3.4 Group delay -- 4 The (Almost) Magical Z-Transform -- 4.1 What does all this mean? Part I -- 4.2 What does all this mean? Part II: poles and zeros -- 4.3 What does all this mean? Part III: the unit circle and the z-plane -- 4.4 More "complex" systems.

5 Region of Convergence (ROC) -- 5.1 Causal system ROC. -- 5.2 Mixed-causality systems -- 5.3 ROC summary -- 6 Stability and the Unit Circle -- 7 The Inverse Z-Transform -- 7.1 Long division method -- 7.2 Taylor series expansion method -- 7.3 Contour integration/residue theorem method -- 8 Useful Tools in MATLABR -- 9 Musical Examples -- References and Further Reading -- 7. Filters -- 1 Introduction -- 2 Low/High/Band-Pass and Band-Stop Filters -- 2.1 Filter design specifications -- 2.2 Passband, stopband, and transition band -- 2.3 Cutoff frequency -- 2.4 Filter order, filter sharpness, and ripple -- 2.5 MATLABR filter design tools -- 3 Filter Examples -- 3.1 Subtractive synthesis and filters -- 3.2 Bi-quadratic filter (a.k.a. Bi-quad filter) and theWah-Wah filter -- 3.3 The Comb-filter -- 3.3.1 Comb-filter interpretation -- 3.3.2 Comb-filter examples -- 3.4 String vibration and standing waves -- 3.5 Physical modeling synthesis and the plucked stringmodel -- 3.5.1 Direct implementation of di.erence equations -- 3.6 Phase as a filtering application -- 3.6.1 The chorus effect -- 3.6.2 Multi-tap filters and filter banks -- 3.6.3 Fractional delay -- 3.6.4 The flanger effect -- 3.6.5 The all-pass filter -- 3.6.6 Very basic all-pass filter reverb -- 4 Musical Examples -- References and Further Reading -- 8. Frequency-Domain and the Fourier Transform -- 1 Introduction -- 2 Additive Synthesis -- 3 The Fourier Transform -- 4 The Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier Transform(DFT) -- 4.1 Magnitude, Phase, and Other Basic Properties of the DFT -- 4.2 Time Resolution vs. Frequency Resolution in DFTs -- 5 Short-Time Fourier Transform (STFT) -- 6 Zero Padding -- 7 Aliasing Revisited -- 8 Another Look: Down-Sampling and Up-Sampling Revisited -- 8.1 Down-Sampling -- 8.2 Up-Sampling.

9 Windowing Revisited: A View from the Frequency-Domain Side -- 9.1 Rectangular Window -- 9.2 Hann Window -- 9.3 Hamming Window -- 9.4 Blackman Window -- 9.5 Chebychev and Kaiser Windows -- 9.6 Not Just More Windowing Stuff -- 10 The Fast Fourier Transform (FFT) -- 11 Convolution (also) Revisited -- 11.1 Circular Convolution and Time-Aliasing -- 12 OneMore Look at Dithering -- 13 Spectrogram -- 14 Fourier Transform Properties and Summary -- 15 MATLABR and Fourier Transform -- 16 Musical Examples -- References and Further Reading -- 9. Spectral Analysis, Vocoders, and other Goodies -- 1 Introduction -- 1.1 Musical signals and important nomenclatures -- 2 Spectral Analysis -- 2.1 Long-term average spectrum (LTAS) -- 2.2 Log vs. linear -- 2.3 Spectral peaks, valleys, and spectral envelope -- 2.4 Extraction of fundamental frequency and harmonics -- 2.4.1 Inverse comb-filtering -- 2.4.2 Cepstrum analysis -- 2.4.3 Harmonic product spectrum -- 3 Vocoders (Voice Coders) -- 3.1 Channel-vocoder -- 3.1.1 Filter banks, envelope followers, and the encoder -- 3.1.2 Voiced and unvoiced analysis and the decoder -- 3.1.3 Voiced and unvoiced decision-making -- 3.1.3.1 Zero-crossing analysis -- 3.1.3.2 Pre-emphasized energy ratio -- 3.1.3.3 Low-band to full-band energy ratio -- 3.1.3.4 Spectral flatness measure -- 3.2 Linear predictive coding (LPC) -- 3.3 LPC coefficient computation -- 3.4 The phase vocoder -- 3.4.1 Estimation of instantaneous frequency -- 3.4.2 Phase unwrapping -- 3.4.3 Phase vocoder: Filter-bank interpretation -- 3.4.4 Phase vocoder: Fourier transform interpretation -- 3.4.5 Phase vocoder basics: Time and pitch-shifting -- 3.4.5.1 Time-shifting -- 3.4.5.2 Pitch-shifting -- 4 Research Topics in Computer Music -- 4.1 Salient feature extraction -- 4.1.1 Spectral envelope -- 4.1.2 Spectral centroid -- 4.1.3 Shimmer and Jitter -- 4.1.4 Spectral flux.

4.1.5 Log spectral spread -- 4.1.6 Roll-off -- 4.1.7 Attack time (rise time) -- 4.1.8 Amplitude modulation (Tremolo) -- 4.1.9 Temporal centroid -- 4.2 MIR (Music information retrieval) -- 4.2.1 Query-by-humming (QbH) -- 4.2.2 Automatic beat detection and rhythm analysis -- 4.2.3 Automatic timbre recognition -- 4.3 FMS (feature modulation synthesis) -- 5 Musical Examples -- References and Further Reading -- Appendix -- 1 To Scale or Not to Scale: That is the Question -- 1.1 Equal temperament scale -- 1.2 Just intonation -- 1.3 Bark scale -- 1.4 Mel scale -- 2 MATLAB Programs Used in This Book -- References and Further Reading -- Index.
Abstract:
This book offers an introduction to digital signal processing (DSP) with an emphasis on audio signals and computer music. It covers the mathematical foundations of DSP, important DSP theories including sampling, LTI systems, the z-transform, FIR/IIR filters, classic sound synthesis algorithms, various digital effects, topics in time and frequency-domain analysis/synthesis, and associated musical/sound examples. Whenever possible, pictures and graphics are included when presenting DSP concepts of various abstractions. To further facilitate understanding of ideas, a plethora of MATLAB® code examples are provided, allowing the reader tangible means to "connect dots" via mathematics, visuals, as well as aural feedback through synthesis and modulation of sound. This book is designed for both technically and musically inclined readers alike-folks with a common goal of exploring digital signal processing. Sample Chapter(s). Chapter 1: Acoustics, Hearing Limitations, and Sampling (5,310 KB). Contents: Acoustics, Hearing Limitations, and Sampling; Time-Domain Signal Processing I; Time-Domain Processes II; Sine Waves; Linear Time-Invariant Systems; Frequency Response; Filters; Frequency-Domain and the Fourier Transform; Spectral Analysis, Vocoders, and Other Goodies. Readership: Undergraduate and graduate students, researchers and academics in digital audio and multimedia as well as music.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: