
Optical Properties and Spectroscopy of Nanomaterials.
Title:
Optical Properties and Spectroscopy of Nanomaterials.
Author:
Zhang, Jin Zhong.
ISBN:
9789812836663
Personal Author:
Physical Description:
1 online resource (400 pages)
Contents:
Contents -- Preface -- Acknowledgments -- 1. Introduction -- References -- 2. Spectroscopic Techniques for Studying Optical Properties of Nanomaterials -- 2.1. UV-visible electronic absorption spectroscopy -- 2.1.1. Operating principle: Beer's law -- 2.1.2. Instrument: UV-visible spectrometer -- 2.1.3. Spectrum and interpretation -- 2.2. Photoluminescence and electroluminescence spectroscopy -- 2.2.1. Operating principle -- 2.2.2. Instrumentation: spectrofluorometer -- 2.2.3. Spectrum and interpretation -- 2.2.4. Electroluminescence (EL) -- 2.3. Infrared (IR) and Raman vibrational spectroscopy -- 2.3.1. IR spectroscopy -- 2.3.2. Raman spectroscopy -- 2.4. Time-resolved optical spectroscopy -- 2.5. Nonlinear optical spectroscopy: harmonic generation and up-conversion -- 2.6. Single nanoparticle and single molecule spectroscopy -- 2.7. Dynamic light scattering (DLS) -- 2.8. Summary -- References -- 3. Other Experimental Techniques: Electron Microscopy and X-ray -- 3.1. Microscopy: AFM, STM, SEM and TEM -- 3.1.1. Scanning probe microscopy (SPM): AFM and STM -- 3.1.2. Electron microscopy: SEM and TEM -- 3.2. X-ray: XRD, XPS, and XAFS, SAXS -- 3.3. Electrochemistry and photoelectrochemistry -- 3.4. Nuclear magnetic resonance (NMR) and electron spin resonance (ESR) -- 3.4.1. Nuclear magnetic resonance (NMR) -- 3.4.2. Electron spin resonance (ESR) -- 3.5. Summary -- References -- 4. Synthesis and Fabrication of Nanomaterials -- 4.1. Solution chemical methods -- 4.1.1. General principle for solution-based colloidal nanoparticle synthesis -- 4.1.2. Metal nanomaterials -- 4.1.3. Semiconductor nanomaterials -- 4.1.4. Metal oxides -- 4.1.5. Complex nanostructures -- 4.1.6. Composite and hetero-junction nanomaterials -- 4.2. Gas or vapor-based methods of synthesis: CVD, MOCVD and MBE -- 4.2.1. Metals -- 4.2.2. Semiconductors -- 4.2.3. Metal oxides.
4.2.4. Complex and composite structures -- 4.3. Nanolithography techniques -- 4.4. Bioconjugation -- 4.5. Toxicity and green chemistry approaches for synthesis -- 4.6. Summary -- References -- 5. Optical Properties of Semiconductor Nanomaterials -- 5.1. Some basic concepts about semiconductors -- 5.1.1. Crystal structure and phonons -- 5.1.2. Electronic energy bands and bandgap -- 5.1.3. Electron and hole effective masses -- 5.1.4. Density-of-states, Fermi energy, and carrier concentration -- 5.1.5. Charge carrier mobility and conductivity -- 5.1.6. Exciton, exciton binding energy, and exciton Bohr radius -- 5.1.7. Fundamental optical absorption due to electronic transitions -- 5.1.8. Trap states and large surface-to-volume ratio -- 5.2. Energy levels and density of states in reduced dimension systems -- 5.2.1. Energy levels -- 5.2.2. Density of states (DOS) in nanomaterials -- 5.2.3. Size dependence of absorption coefficient, oscillator strength, and exciton lifetime -- 5.3. Electronic structure and electronic properties -- 5.3.1. Electronic structure of nanomaterials -- 5.3.2. Electron-phonon interaction -- 5.4. Optical properties of semiconductor nanomaterials -- 5.4.1. Absorption: direct and indirect bandgap transitions -- 5.4.2. Emission: photoluminescence and Raman scattering -- 5.4.3. Emission: chemiluminescence and electroluminescence -- 5.4.4. Optical properties of assembled nanostructures: interaction between nanoparticles -- 5.4.5. Shape dependent optical properties -- 5.5. Doped semiconductors: absorption and luminescence -- 5.6. Nonlinear optical properties -- 5.6.1. Absorption saturation and harmonic generation -- 5.6.2. Luminescence up-conversion -- 5.7. Optical properties of single particles -- 5.8. Summary -- References -- 6. Optical Properties of Metal Oxide Nanomaterials -- 6.1. Optical absorption -- 6.2. Optical emission.
6.3. Other optical properties: doped and sensitized metal oxides -- 6.4. Nonlinear optical properties: luminescence up-conversion (LUC) -- 6.5. Summary -- References -- 7. Optical Properties of Metal Nanomaterials -- 7.1. Strong absorption and lack of photoemission -- 7.2. Surface plasmon resonance (SPR) -- 7.3. Correlation between structure and SPR: a theoretical perspective -- 7.3.1. Effects of size and surface on SPR of metal nanoparticles -- 7.3.2. The effect of shape on SPR -- 7.3.3. The effect of substrate on SPR -- 7.3.4. Effect of particle-particle interaction on SPR -- 7.4. Surface enhanced Raman scattering (SERS) -- 7.4.1. Background of SERS -- 7.4.2. Mechanism of SERS -- 7.4.3. Distance dependence of SERS -- 7.4.4. Location and orientation dependence of SERS -- 7.4.5. Dependence of SERS on substrate -- 7.4.6. Single nanoparticle and single molecule SERS -- 7.5. Summary -- References -- 8. Optical Properties of Composite Nanostructures -- 8.1. Inorganic semiconductor-insulator and semiconductor-semiconductor -- 8.2. Inorganic metal-insulator -- 8.3. Inorganic semiconductor-metal -- 8.4. Inorganic-organic (polymer) -- 8.4.1. Nonconjugated polymers -- 8.4.2. Conjugated polymers -- 8.5. Inorganic-biological materials -- 8.6. Summary -- References -- 9. Charge Carrier Dynamics in Nanomaterials -- 9.1. Experimental techniques for dynamics studies in nanomaterials -- 9.2. Electron and photon relaxation dynamics in metal nanomaterials -- 9.2.1. Electronic dephasing and spectral line shape -- 9.2.2. Electronic relaxation due to electron-phonon interaction -- 9.2.3. Photon relaxation dynamics -- 9.3. Charge carrier dynamics in semiconductor nanomaterials -- 9.3.1. Spectral line width and electronic dephasing -- 9.3.2. Intraband charge carrier energy relaxation -- 9.3.3. Charge carrier trapping.
9.3.4. Interband electron-hole recombination or single excitonic delay -- 9.3.5. Charge carrier dynamics in doped semiconductor nanomaterials -- 9.3.6. Nonlinear charge carrier dynamics -- 9.4. Charge carrier dynamics in metal oxide and insulator nanomaterials -- 9.5. Photoinduced charge transfer dynamics -- 9.6. Summary -- References -- 10. Applications of Optical Properties of Nanomaterials -- 10.1. Chemical and biomedical detection, imaging and therapy -- 10.1.1. Luminescence-based detection -- 10.1.2. Surface plasmon resonance (SPR) detection -- 10.1.3. SERS for detection -- 10.1.4. Chemical and biochemical imaging -- 10.1.5. Biomedical therapy -- 10.2. Energy conversion: PV and PEC -- 10.2.1. PV solar cells -- 10.2.2. Photoelectrochemical cells (PEC) -- 10.3. Environmental protection: photocatalytic and photochemical reactions -- 10.4. Lasers, LEDs, and solid state lighting -- 10.4.1. Lasing and lasers -- 10.4.2. Light emitting diodes (LEDs) -- 10.4.3. Solid state lighting: ACPEL -- 10.4.4. Optical detectors -- 10.5. Optical filters: photonic bandgap materials or photonic crystals -- 10.6. Summary -- References -- Index.
Abstract:
Optical properties are among the most fascinating and useful properties of nanomaterials and have been extensively studied using a variety of optical spectroscopic techniques. A basic understanding of the optical properties and related spectroscopic techniques is essential for anyone who is interested in learning about nanomaterials of semiconductors, insulators or metal. This is partly because optical properties are intimately related to other properties and functionalities (e.g. electronic, magnetic, and thermal) that are of fundamental importance to many technological applications, such as energy conversion, chemical analysis, biomedicine, optoelectronics, communication, and radiation detection. Intentionally designed for upper-level undergraduate students and beginning graduate students with some basic knowledge of quantum mechanics, this book provides the first systematic coverage of optical properties and spectroscopic techniques of nanomaterials. Sample Chapter(s). Chapter 1: Introduction (6,262 KB). Chapter 2: Spectroscopic Techniques for Studying Optical Properties of Nanomaterials (498 KB). Chapter 3: Other Experimental Techniques: Electron Microscopy and X-ray (6,295 KB). Contents: Spectroscopic Techniques for Studying Optical Properties of Nanomaterials; Other Experimental Techniques: Electron Microscopy and X-Ray; Synthesis and Fabrication of Nanomaterials; Optical Properties of Semiconductor Nanomaterials; Optical Properties of Metal Oxide Nanomaterials; Optical Properties of Metal Nanomaterials; Optical Properties of Composite Nanostructures; Charge Carrier Dynamics in Nanomaterials; Applications of Optical Properties of Nanomaterials. Readership: Advanced undergraduates, graduate students and researchers in physics, chemistry, materials science and engineering.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View