
Bio-Ceramics with Clinical Applications.
Title:
Bio-Ceramics with Clinical Applications.
Author:
Vallet-Regi, Maria.
ISBN:
9781118406731
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (498 pages)
Contents:
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Part I Introduction -- Chapter 1 Bioceramics -- 1.1 Introduction -- 1.2 Reactivity of the Bioceramics -- 1.3 First, Second, and Third Generations of Bioceramics -- 1.4 Multidisciplinary Field -- 1.5 Solutions for Bone Repairing -- 1.6 Biomedical Engineering -- Recommended Reading -- Chapter 2 Biomimetics -- 2.1 Biomimetics -- 2.2 Formation of Hard Tissues -- 2.3 Biominerals versus Biomaterials -- Recommended Reading -- Part II Materials -- Chapter 3 Calcium Phosphate Bioceramics -- 3.1 History of Calcium Phosphate Biomaterials -- 3.2 Generalities of Calcium Phosphates -- 3.3 In vivo Response of Calcium Phosphate Bioceramics -- 3.4 Calcium Hydroxyapatite-Based Bioceramics -- 3.4.1 Stoichiometric Hydroxyapatite (HA) -- 3.4.2 Calcium Deficient Hydroxyapatites (CDHA) -- 3.4.3 Carbonated Hydroxyapatites (CHA) -- 3.4.4 Silicon-Substituted Hydroxyapatite (Si-HA) -- 3.4.5 Hydroxyapatites of Natural Origin -- 3.5 Tricalcium Phosphate-Based Bioceramics -- 3.5.1 β-Tricalcium Phosphate (β-TCP) -- 3.5.2 α-Tricalcium Phosphate (α-TCP) -- 3.6 Biphasic Calcium Phosphates (BCP) -- 3.6.1 Chemical and Structural Properties -- 3.6.2 Preparation Methods -- 3.6.3 Clinical Applications -- 3.7 Calcium Phosphate Nanoparticles -- 3.7.1 General Properties and Scope of Calcium Phosphate Nanoparticles -- 3.7.2 Preparation Methods of CaP Nanoparticles -- 3.7.3 Clinical Applications -- 3.8 Calcium Phosphate Advanced Biomaterials -- 3.8.1 Scaffolds for in situ Bone Regeneration and Tissue Engineering -- 3.8.2 Drug Delivery Systems -- References -- Chapter 4 Silica-based Ceramics: Glasses -- 4.1 Introduction -- 4.1.1 What Is a Glass? -- 4.1.2 Properties of Glasses -- 4.1.3 Structure of Glasses -- 4.1.4 Synthesis of Glasses -- 4.2 Glasses as Biomaterials.
4.2.1 First Bioactive Glasses (BGs): Melt-Prepared Glasses (MPGs) -- 4.2.2 Other Bioactive MPGs -- 4.2.3 Bioactivity Index and Network Connectivity -- 4.2.4 Mechanism of Bioactivity -- 4.3 Increasing the Bioactivity of Glasses: New Methods of Synthesis -- 4.3.1 Sol-Gel Glasses (SGGs) -- 4.3.2 Composition, Texture, and Bioactivity of SSGs -- 4.3.3 Biocompatibility of SGGs -- 4.3.4 SGGs as Bioactivity Accelerators in Biphasic Materials -- 4.3.5 Template Glasses (TGs) Bioactive Glasses with Ordered Mesoporosity -- 4.3.6 Atomic Length Scale in BGs: How the Local Structure Affects Bioactivity -- 4.3.7 New Reformulation of Hench's Mechanism for TGs -- 4.3.8 Including Therapeutic Inorganic Ions in the Glass Composition -- 4.4 Strengthening and Adding New Capabilities to Bioactive Glasses -- 4.4.1 Glass Ceramics (GCs) -- 4.4.2 Composites Containing Bioactive Glasses -- 4.4.3 Sol-Gel Organic-Inorganic Hybrids (O-IHs) -- 4.5 Non-silicate Glasses -- 4.5.1 Phosphate Glasses -- 4.5.2 Borate Glasses -- 4.6 Clinical Applications of Glasses -- 4.6.1 Bioactive Silica Glasses -- 4.6.2 Inert Silica Glasses -- 4.6.3 Phosphate Glasses -- 4.6.4 Borate Glasses -- Recommended Reading -- Chapter 5 Silica-based Ceramics: Mesoporous Silica -- 5.1 Introduction -- 5.2 Discovery of Ordered Mesoporous Silicas -- 5.3 Synthesis of Ordered Mesoporous Silicas -- 5.3.1 Hydrothermal Synthesis -- 5.3.2 Evaporation-Induced Self-Assembly (EISA) Method -- 5.4 Mechanisms of Mesostructure Formation -- 5.5 Tuning the Structural Properties of Mesoporous Silicas -- 5.5.1 Micellar Mesostructure -- 5.5.2 Type of Mesoporous Structure -- 5.5.3 Mesopore Size -- 5.6 Structural Characterization of Mesoporous Silicas -- 5.7 Synthesis of Spherical Mesoporous Silica Nanoparticles -- 5.7.1 Aerosol-Assisted Synthesis -- 5.7.2 Modified Stöber Method.
5.8 Organic Functionalization of Ordered Mesoporous Silicas -- 5.8.1 Post-synthesis Functionalization ("Grafting") -- 5.8.2 Co-condensation ("One-Pot" Synthesis) -- 5.8.3 Periodic Mesoporous Organosilicas -- References -- Chapter 6 Alumina, Zirconia, and Other Non-oxide Inert Bioceramics -- 6.1 A Perspective on the Clinical Application of Alumina and Zirconia -- 6.1.1 Alumina -- 6.1.2 Zirconia -- 6.2 Novel Strategies Based on Alumina and Zirconia Ceramics -- 6.2.1 From Alumina Toughened Zirconia to Alumina Matrix Composite -- 6.2.2 Introduction of Different Species in Zirconia -- 6.2.3 Improvement of Surface Adhesion -- 6.3 Non-oxidized Ceramics -- 6.3.1 Silicon Nitride (Si3 N4) -- 6.3.2 Silicon Carbide (SiC) -- References -- Chapter 7 Carbon-based Materials in Biomedicine -- 7.1 Introduction -- 7.2 Carbon Allotropes -- 7.2.1 Pyrolytic Carbon -- 7.2.2 Carbon Fibers -- 7.2.3 Fullerenes -- 7.2.4 Carbon Nanotubes -- 7.2.5 Graphene -- 7.2.6 Diamond and Amorphous Carbon -- 7.3 Carbon Compounds -- 7.3.1 Silicon Carbide -- 7.3.2 Boron Carbide -- 7.3.3 Tungsten Carbide -- References -- Part III Material Shaping -- Chapter 8 Cements -- Abbreviations -- Glossary -- 8.1 Introduction -- 8.1.1 Brief History -- 8.1.2 Definition and Chemistry -- 8.1.3 Description of the Different CaP Cements -- 8.1.4 State of the Art -- 8.2 Calcium Phosphate Cements -- 8.2.1 Types -- 8.2.2 Mechanisms -- 8.2.3 Relevant Experimental Variables -- 8.2.4 Material Characterization -- 8.2.5 Reaction Evolution of Cements -- 8.2.6 Additives and Strategies to Enhance Properties -- 8.2.7 Biological Characterization and Bioactive Behavior -- 8.3 Applications -- 8.3.1 Bone Defect Repair -- 8.3.2 Drug Delivery Systems -- 8.4 Future Trends -- 8.5 Conclusions -- References -- Chapter 9 Bioceramic Coatings for Medical Implants -- 9.1 Introduction.
9.2 Methods to Modify the Surface of an Implant -- 9.2.1 Deposited Coatings -- 9.2.2 Conversion Coatings -- 9.3 Bioactive Ceramic Coatings -- 9.3.1 Clinical Applications -- 9.3.2 Calcium Phosphates-Based Coatings -- 9.3.3 Silica-based Coatings: Glass and Glass-Ceramics -- 9.3.4 Bioactive Ceramic Layer Formation on a Metallic Substrate -- 9.4 Bioinert Ceramic Coatings -- 9.4.1 Titanium Nitride and Zirconia Coatings -- 9.4.2 Carbon-based Coatings -- References -- Chapter 10 Scaffold Designing -- 10.1 Introduction -- 10.2 Essential Requirements for Bone Tissue Engineering Scaffolds -- 10.3 Scaffold Processing Techniques -- 10.3.1 Foam Scaffolds -- 10.3.2 Rapid Prototyping Scaffolds -- 10.3.3 Electrospinning Scaffolds -- References -- Part IV Research on Future Ceramics -- Chapter 11 Bone Biology and Regeneration -- 11.1 Introduction -- 11.2 The Skeleton -- 11.3 Bone Remodeling -- 11.4 Bone Cells -- 11.4.1 Bone Lining Cells -- 11.4.2 Osteoblasts -- 11.4.3 Osteocytes -- 11.4.4 Osteoclasts -- 11.5 Bone Extracellular Matrix -- 11.6 Bone Diseases -- 11.6.1 Osteoporosis -- 11.6.2 Paget's Disease -- 11.6.3 Osteomalacia -- 11.6.4 Osteogenesis Imperfecta -- 11.7 Bone Mechanics -- 11.8 Bone Tissue Regeneration -- 11.8.1 Calcium Phosphate and Silica-based Bioceramics -- 11.8.2 Bioactive Glasses -- 11.8.3 Calcium Phosphate Cements -- 11.9 Conclusions -- References -- Chapter 12 Ceramics for Drug Delivery -- 12.1 Introduction -- 12.2 Drug Delivery -- 12.3 Drug Delivery from Calcium Phosphates -- 12.3.1 Drug Delivery from Hydroxyapatite -- 12.3.2 Drug Delivery from Tricalcium Phosphates -- 12.3.3 Drug Delivery from Calcium Phosphate Cements -- 12.4 Drug Delivery from Silica-based Ceramics -- 12.4.1 Drug Delivery from Glasses -- 12.4.2 Drug Delivery from Mesoporous Silica -- 12.5 Drug Delivery from Carbon Nanotubes.
12.6 Drug Delivery from Ceramic Coatings -- References -- Chapter 13 Ceramics for Gene Transfection -- 13.1 Gene Transfection -- 13.2 Gene Transfection Based on Nonviral Vectors -- 13.3 Ceramic Nanoparticles for Gene Transfection -- 13.3.1 Calcium Phosphate Nanoparticles -- 13.3.2 Mesoporous Silica Nanoparticles -- 13.3.3 Carbon Allotropes (Fullerenes, CNTs, Graphene Oxide) -- 13.3.4 Magnetic Iron Oxide Nanoparticles -- References -- Chapter 14 Ceramic Nanoparticles for Cancer Treatment -- 14.1 Delivery of Nanocarriers to Solid Tumors -- 14.1.1 Special Issues of Tumor Vasculature: Enhanced Permeation and Retention Effect (EPR) -- 14.1.2 Tumor Microenvironment -- 14.2 Ceramic Nanoparticle Pharmacokinetics in Cancer Treatment -- 14.2.1 Biodistribution and Excretion/Clearance Pathways -- 14.2.2 Toxicity of the Ceramic Nanoparticles -- 14.3 Cancer-targeted Therapy -- 14.3.1 Endocytic Mechanism of Targeted Drug Delivery -- 14.3.2 Specific Tumor Active Targeting -- 14.3.3 Angiogenesis-associated Active Targeting -- 14.4 Ceramic Nanoparticles for Cancer Treatment -- 14.4.1 Mesoporous Silica Nanoparticles -- 14.4.2 Calcium Phosphates Nanoparticles -- 14.4.3 Carbon Allotropes -- 14.4.4 Iron Oxide Nanoparticles and Hyperthermia -- 14.5 Imaging and Theranostic Applications -- References -- Index -- Supplemental Images.
Abstract:
This publication offers a unique approach that links the materials science of bioceramics to clinical needs and applications. Providing a structured account of this highly active area of research, the book reviews the clinical applications in bone tissue engineering, bone regeneration, joint replacement, drug-delivery systems and biomimetism, this book is an ideal resource for materials scientists and engineers, as well as for clinicians. From the contents: Part I Introduction 1. Bioceramics 2. Biomimetics Part II Materials 3. Calcium Phosphate Bioceramics 4. Silica-based Ceramics: Glasses 5. Silica-based Ceramics: Mesoporous Silica 6. Alumina, Zirconia, and Other Non-oxide Inert Bioceramics 7. Carbon-based Materials in Biomedicine Part III Material Shaping 8. Cements 9. Bioceramic Coatings for Medical Implants 10. Scaffold Designing Part IV Research on Future Ceramics 11. Bone Biology and Regeneration 12. Ceramics for Drug Delivery 13. Ceramics for Gene Transfection 14. Ceramic Nanoparticles for Cancer Treatment.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View