Cover image for SMS Communication : A linguistic approach.
SMS Communication : A linguistic approach.
Title:
SMS Communication : A linguistic approach.
Author:
Cougnon, Louise-Amélie.
ISBN:
9789027270306
Personal Author:
Physical Description:
1 online resource (275 pages)
Series:
Benjamins Current Topics ; v.61

Benjamins Current Topics
Contents:
SMS Communication -- Editorial page -- Title page -- LCC data -- Table of contents -- Acknowledgements -- Foreword -- Introduction -- Seek&Hide: Anonymising a French SMS Corpus Using Natural Language Processing Techniques -- Introduction -- 1. Literature review -- 2. Seek&Hide: A system for anonymising a French corpus -- 2.1 The Automatic Phase -- 2.1.1 Purpose -- 2.1.2 Process: The Seek&Hide Algorithm -- 2.1.3 Heuristics for SMS processing -- The LRepet Algorithm -- 2.2. The Semi-automatic Phase -- 3. Experiments -- 3.1 Experimental Protocol -- 3.2. Global Analysis of the Seek&Hide Results -- 3.2.1 Method of Evaluation -- 3.2.2 Evaluation of the Seek&Hide Heuristics -- Conclusion and Future Work -- Acknowledgements -- References -- Summary -- SMS Experience and Textisms in Young Adolescents -- Introduction -- 1. Orthographic forms of SMSs (textisms) in young adolescents -- 2. Research objectives -- 3. Method -- 3.1 Participants -- 3.2 Materials -- 3.3 Procedure -- 3.4 Coding -- 4. Results -- 4.1 Different types of textisms -- 4.2 The density of textisms -- Conclusions -- Acknowledgments -- References -- Summary -- Automatic or Controlled Writing? -- Introduction -- 1. Writing and working memory -- 2. SMS and spelling -- Objectives -- 3. Method -- 3.1 Participants -- 3.2 Measures -- 3.2.1 Spelling Level Test (TNO) -- 3.2.2 Questionnaire -- 3.2.3 Materials for the experimental protocol -- 4. Procedure -- 4.1 Questionnaire and TNO -- 4.2 Experimental protocol -- 4.3 Coding -- 5. Results -- 5.1 Analysis of the percentage and type of modifications -- 5.2 Analysis of the spelling modification sub-categories -- Discussion -- Aknowledgements -- References -- Summary -- Development of SMS language from 2000 to 2010 -- Introduction -- 1. The two corpora -- 1.1 Description of the online corpus -- 1.2 Compilation of my own data -- 1.2.1 Authorisation.

1.2.2 Pupils' questionnaire part A (SQ1) -- 1.2.3 Pupils' questionnaire part B (SQ2) -- 2. Comparison of the data -- 2.1 Classification of spelling adaptations -- 2.2 Coding of the databases -- 2.3 Devices used in both corpora -- 2.4 Other significant features -- 3. Conclusions -- References -- Summary -- Texto4Science -- Introduction -- 1. Design of the Texto4science Project -- 1.1 Technical Platform -- 1.2 Elaboration of an Annotation Policy -- 1.3 A Rich Annotation System -- 1.4 Diary of the Texto4science Project -- 2. Annotation System -- 2.1 Specific Units -- 2.2 Annotated Errors -- 2.3 A Quantitative View of the Annotations -- 3. Linguistic Analysis -- 3.1 SMSs are Slightly Shorter than their Normalised Counterpart -- 3.2 Abbreviations are Numerous and Ambiguous -- 3.3 On the Use of Smileys -- 3.4 Missing Annotations -- 4. Sociolinguistic Analysis -- 4.1 Contributors' Profile -- 4.1.1 Personal Information -- 4.1.2 Use of SMSs -- 4.1.3 Abilities to Write SMSs -- 4.1.4 Technical Device -- 5. Discussion -- 5.1 Lessons Learned -- 5.2 Ongoing Projects -- Acknowledgments -- References -- Summary -- SMS communication as plurilingual communication -- 1. Introduction: Code-switching and SMS communication -- 1.1 Code-switching and bilingual communication -- 1.2 SMS communication as plurilingual communication? -- 2. The data and its linguistic context -- 2.1 Data -- 2.2 The Swiss linguistic landscape -- 3. Fuzzy borders: Identifying codes and code-switches in SMS communication -- 3.1 The codes at play -- 3.1.1 Style shifting, neologisms and semantic shift -- 3.1.2 Pseudo-borrowings and allogenisms -- 3.1.3 Homographs/homophones -- 3.1.4 Mixed spellings and morphological variants -- 3.1.5 Ideographic switching -- 3.2 The limits of traditional CS categories -- 3.2.1 Established borrowing or code-switching? -- 3.2.2 Fixed formulae -- 3.2.3 So what?.

4. Conclusion -- References -- Online References -- Summary -- French text messages -- Introduction -- 1. Data collection: 93,085 text messages -- 2. Linking data and usage: Sociolinguistic questionnaire -- 2.1 Preliminary work and pluri-disciplinary skills -- 2.2 Sociological aspects -- 2.3 Sociolinguistic aspects -- 2.3.1 Language choice -- 2.3.2 Languages used -- 2.3.3 Representations of SMS writing -- 3. Preliminary results and data processing procedures -- 3.1 Participants, professions, languages -- 3.2 Data processing procedures -- 3.2.1 Anonymisation software -- 3.2.2 Transcoding -- 3.2.3 Annotation -- 3.2.4 Linguistic analysis -- 4. From 'isolated' to 'conversational' text messages -- 4.1 Grammar and interaction -- 4.2 Context and conversational rituals -- 4.3 Events and emotions -- Conclusion -- Acknowledgements -- References -- Projects/programmes -- Summary -- French text messages. From SMS data collection to preliminary analysis. -- Appendix: Questionnaire -- A sociolinguistic analysis of transnational SMS practices -- Introduction: Towards a sociolinguistics of transnational migrants' SMS talk -- 1. Aims of this study, method and data -- 2. Migrants' transnational SMS practices: Heterography, grassroots literacy and other transidiomatic practices -- 3. The organisation of social life through fully-fledged hybrid "we-codes" -- Conclusion -- References -- Summary -- Negation marking in French text messages -- Introduction -- 1. State of the art and hypotheses -- 2. Data and Methodology -- 3. Results -- 3.1 Subject type -- 3.2 Form and frequency of the postverbal negative element -- 3.3 Non-finite verb forms / imperative vs indicative verb forms -- 4. Discussion -- 5. Conclusion -- References -- Summary -- "i didn't spel that wrong did i. Oops" -- Introduction -- 1. The significance of SMS spelling variation -- 2. VARD and DICER.

3. Data and participants -- 4. Manual normalisation -- 5. DICER Analysis -- 5.1 Categories of spelling variation -- 5.2 Summary of the DICER categories analysis -- Conclusions -- Acknowledgments -- References -- Summary -- Lol, mdr and ptdr -- Introduction -- 1. Literature on lol, mdr and ptdr -- 2. Syntactic and semantic characteristics of discourse markers -- 3. Text messaging -- 4. Data and methods -- 4.1 The SMS corpus -- 4.2 The discourse marker parameters -- 4.2.1 Syntactic parameters -- 4.2.2 Semantic parameters -- 4.2.3 Discourse marker scores -- 4.3 Context -- 4.3.1 Co-occurrences -- 4.3.2 Moods and moves -- Discussion -- Conclusions -- Acknowledgements -- References -- Appendix. List of co-occurrences and recurrences with lol, mdr and ptdr -- Summary -- Subject index.
Abstract:
Given the extensive use of LOL (Laughing Out Loud), MDR (Mort De Rire) and PTDR (PéTé De Rire) in French texting and the inclusion of lol in the Oxford English Dictionary in 2011 and in Le Petit Robert in 2013, this paper aims to study the functioning of these three initialisms. Considered mainly as interjections, I hypothesize that lol, mdr, and ptdr could work syntactically (through their non-integration in the syntactic clause and position) and semantically (through their semantic opacity and procedural meaning) as discourse markers. In order to show this discourse marker use, this exploratory study was carried out using a prototypical methodology characterized by an inclusive and gradual approach. Based on syntactic and semantic analysis, a discourse marker ranking was performed, and this resulted in a contextual analysis (co-occurrences, moods and moves).This inclusive and gradual approach allows for doubt and lack of knowledge of the context in the analysis process. More broadly, this work also throws light on texting as a spontaneous computer-mediated communication type with writing constraints imposed by the communication medium and the situation.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: