Cover image for N-Heterocyclic Carbenes : Effective Tools for Organometallic Synthesis.
N-Heterocyclic Carbenes : Effective Tools for Organometallic Synthesis.
Title:
N-Heterocyclic Carbenes : Effective Tools for Organometallic Synthesis.
Author:
Nolan, Steven P.
ISBN:
9783527671250
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (569 pages)
Contents:
N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis -- Contents -- List of Contributors -- Preface -- 1 N-Heterocyclic Carbenes -- 1.1 Introduction -- 1.2 Structure and Properties of NHCs -- 1.3 Abnormal Carbenes -- 1.4 Why Are NHCs Stable? -- 1.5 Bonding of NHCs to Metal Centers -- 1.6 Quantifying the Properties of NHCs -- 1.6.1 Steric Impact -- 1.6.2 Electronic Properties -- 1.7 N-Heterocyclic Carbenes in the Context of Other Stable Carbenes -- 1.8 Synthesis of NHCs -- 1.9 Salts and Adducts of NHCs -- 1.10 Summary -- References -- 2 Tuning and Quantifying Steric and Electronic Effects of N-Heterocyclic Carbenes -- 2.1 Introduction -- 2.2 Steric Effects in NHC ligands -- 2.3 Electronic Effects in NHC Ligands -- 2.4 Conclusions -- References -- 3 Chiral Monodendate N-Heterocyclic Carbene Ligands in Asymmetric Catalysis -- 3.1 Introduction -- 3.2 NHC-Ru -- 3.2.1 Asymmetric Metathesis -- 3.2.2 Asymmetric Hydrogenation -- 3.2.3 Asymmetric Hydrosilylation -- 3.3 NHC-Rh -- 3.3.1 Asymmetric Catalysis Using Boronic Acids as Nucleophiles -- 3.3.2 Asymmetric Hydrosilylation -- 3.3.3 Asymmetric Hydroformylation -- 3.4 NHC-Ir -- 3.5 NHC-Ni -- 3.6 NHC-Pd -- 3.6.1 Asymmetric Intramolecular α-Arylation of Amides -- 3.6.2 Asymmetric Diamination -- 3.6.3 Other Asymmetric Catalysis Using NHC-Pd -- 3.7 NHC-Cu -- 3.7.1 Asymmetric Conjugate Addition -- 3.7.2 Asymmetric Allylic Substitution -- 3.7.3 Silyl Conjugate Addition -- 3.7.4 Enantioselective β-Boration -- 3.7.5 Asymmetric Hydrosilylation -- 3.7.6 Asymmetric Addition to Imines -- 3.8 NHC-Ag -- 3.9 NHC-Au -- 3.9.1 Enantioselective Cycloisomerizations -- 3.9.2 Enantioselective Hydrogenation -- 3.9.3 Enantioselective Cycloaddition -- 3.10 Conclusion -- References -- 4 (N-Heterocyclic Carbene)-Palladium Complexes in Catalysis -- 4.1 Introduction -- 4.2 Cross-Coupling Reactions.

4.2.1 Suzuki-Miyaura Coupling -- 4.2.2 Buchwald-Hartwig Aminations -- 4.2.3 Negishi Reactions -- 4.2.4 Hiyama Coupling -- 4.2.5 Kumada Coupling -- 4.2.6 Sonogashira Coupling -- 4.2.7 Heck Reaction -- 4.3 Chelates and Pincer Ligands -- 4.4 Asymmetric Catalysis -- 4.5 Oxidation Reactions -- 4.6 Telomerization, Oligomerization and Polymerization -- 4.7 Anticancer NHC-Pd Complexes -- References -- 5 NHC Platinum(0) Complexes: Unique Catalysts for the Hydrosilylation of Alkenes and Alkynes -- 5.1 Introduction -- 5.2 Hydrosilylation of Alkenes: The Beginning -- 5.3 Initial Results with Phosphine Ligands -- 5.4 NHC Platinum(0) Complexes: The Breakthrough -- 5.4.1 Synthesis of NHC Platinum(0) Complexes and Kinetic Assays -- 5.4.2 Functional Group Tolerance and Substrate Scope -- 5.4.3 Mechanistic Studies -- 5.4.3.1 Activation Period -- 5.4.3.2 Catalyst Deactivation Pathways -- 5.4.3.3 Semiquantitative Kinetic Studies -- 5.4.3.4 Quantitative Kinetic Modeling -- 5.4.3.5 Conclusions -- 5.5 Hydrosilylation of Alkynes -- 5.5.1 Catalyst Screening and the Impact of NHCs on Regioselectivity -- 5.5.2 Influence of Silane on Regioselectivity -- 5.5.3 Second-Generation Catalyst for the Hydrosilylation of Alkynes -- 5.5.4 Functional Group Tolerance and Substrate Scope -- 5.5.5 Mechanistic Studies -- 5.5.5.1 Qualitative Kinetic Studies -- 5.5.5.2 Catalyst Activation and Deactivation Pathways -- 5.5.5.3 Proposed Mechanism -- 5.6 Conclusions -- References -- 6 Synthesis and Medicinal Properties of Silver-NHC Complexes and Imidazolium Salts -- 6.1 Introduction -- 6.2 Silver-NHC Complexes as Antimicrobial Agents -- 6.3 Silver-NHC Complexes as Anticancer Agents -- 6.4 Conclusions -- References -- 7 Medical Applications of NHC-Gold and -Copper Complexes -- 7.1 Introduction -- 7.2 Gold Antimicrobial Agents -- 7.3 Metals as Antitumor Reagents.

7.4 Copper Complexes as Antitumoral Reagents -- 7.5 Conclusion -- References -- 8 NHC-Copper Complexes and their Applications -- 8.1 Introduction -- 8.2 History of NHC-Copper Systems -- 8.3 Hydrosilylation -- 8.4 Allene Formation -- 8.5 1,4-Reduction -- 8.6 Conjugate Addition -- 8.6.1 Zinc Reagents -- 8.6.2 Grignard Reagents -- 8.6.3 Aluminum Reagents -- 8.6.4 Boron Reagents -- 8.7 Hydrothiolation, Hydroalkoxylation, Hydroamination -- 8.8 Carboxylation and Carbonylation (via Boronic Acids, CH Activation): CO2 Insertion -- 8.9 [3 + 2] Cycloaddition Reaction: Formation of Triazole -- 8.10 Allylic Substitution -- 8.10.1 Zinc Reagents -- 8.10.2 Grignard Reagents -- 8.10.3 Aluminum Reagents -- 8.10.4 Boron Reagents -- 8.11 Carbene and Nitrene Transfer -- 8.12 Boration Reaction -- 8.12.1 Boration of Ketone and Aldehyde -- 8.12.2 Boration of Alkene -- 8.12.3 Boration of Alkyne -- 8.12.4 Carboboration -- 8.13 Olefination of Carbonyl Derivatives -- 8.14 Copper-Mediated Cross-Coupling Reaction -- 8.15 Fluoride Chemistry -- 8.16 Other Reactions -- 8.16.1 A3 Coupling -- 8.16.2 Semihydrogenation of Alkyne -- 8.16.3 Borocarboxylation of Alkyne -- 8.16.4 Hydrocarboxylation of Alkyne -- 8.17 Transmetalation -- 8.18 Conclusion -- References -- 9 NHC-Au(I) Complexes: Synthesis, Activation, and Application -- 9.1 Introduction -- 9.2 Synthesis of NHC-Gold(I) Chlorides -- 9.3 Activation of NHC-Au(I) Chlorides -- 9.4 Applications of NHC-Au(I) Catalysts -- 9.4.1 Improvement of Catalyst Stability During Gold-Catalyzed Reactions Due to the Use of NHC Ligands -- 9.4.2 Improvement of Gold Catalysis Due to Tuning the Steric Properties of the NHC Ligands Used -- 9.4.3 Improvement of Gold Catalysis by Tuning the Electronic Properties of the NHC Ligands Used -- 9.4.4 Alteration of the Reactivity of Gold Catalysis by Switching from Phosphine to NHC Ligands.

9.4.5 Enantioselective Gold Catalyzed Transformations Based on Chiral, Enantiopure NHC-Based Catalysts -- 9.5 Conclusion -- References -- 10 Recent Developments in the Synthesis and Applications of Rhodium and Iridium Complexes Bearing N-Heterocyclic Carbene Ligands -- 10.1 Introduction -- 10.2 Rh- and Ir-NHC-Based Complexes: Structural and Electronic Features -- 10.2.1 Mono-NHCs -- 10.2.2 Chelating NHCs -- 10.2.2.1 Bidentate Chelating bis-NHC Complexes -- 10.2.2.2 Chelating Chiral bis-NHC Complexes -- 10.2.2.3 Donor-Functionalized Chelating NHC Complexes -- 10.2.3 Bridging NHCs -- 10.2.3.1 Complexes with NHC Ligands with Facially Opposed Coordination Abilities -- 10.3 Catalytic Applications of Rhodium and Iridium NHC-Based Complexes -- 10.3.1 Reductions -- 10.3.1.1 Transfer Hydrogenation -- 10.3.1.2 Reductions with H2 -- 10.3.1.3 Borrowing-Hydrogen Processes -- 10.3.1.4 Hydrosilylation -- 10.3.2 Arylation and Borylation Reactions with Organoboron Reagents -- 10.3.3 Oxidations -- 10.3.3.1 Dehydrogenation of Alcohols -- 10.3.3.2 Dehydrogenation of Alkanes -- 10.3.3.3 Water Oxidation -- 10.3.4 Other Important Catalytic Processes -- 10.3.4.1 H/D Exchange Reactions -- 10.3.4.2 Dehydrogenation of Saturated CC and BN Bonds -- 10.3.4.3 Hydrothiolation of Alkynes -- 10.3.4.4 Cis-Selected Cyclopropanation Reactions -- 10.3.4.5 Hydroamination of Alkynes -- 10.3.4.6 Magnetization Transfer from Para-Hydrogen -- 10.4 Abbreviations -- References -- 11 N-Heterocyclic Carbene-Ruthenium Complexes: A Prominent Breakthrough in Metathesis Reactions -- 11.1 Introduction -- 11.2 Variations of NHC in Ruthenium Complexes -- 11.3 Modifications in Imidazol- and Imidazolin-2-ylidene Ligands -- 11.4 Influence of Symmetrically 1,3-Substituted N-Heterocyclic Carbene in Metathesis -- 11.4.1 N, N-́Dialkyl Substituted N-Heterocyclic Carbene Complexes.

11.4.2 N, N-́Diaryl Substituted N-Heterocyclic Carbene Complexes -- 11.5 Unsymmetrically N,N-́Substituted N-Heterocyclic Carbenes -- 11.5.1 N-Alkyl-N-́Aryl Substituted N-Heterocyclic Carbene Complexes -- 11.5.2 N, N-́Diaryl-Substituted N-Heterocyclic Carbene Complexes -- 11.5.3 Influence of 4,5-Substituted N-Heterocyclic Carbenes in Metathesis -- 11.5.4 Four-, Six-, and Seven-Membered N-Heterocyclic Carbenes -- 11.5.5 Heteroatom Containing N-Heterocyclic Carbenes -- 11.5.6 N-Heterocyclic Carbene Bearing Chiral Ru Complexes -- 11.5.7 Chiral Monodentate N-Heterocyclic Carbenes -- 11.5.8 Chiral Bidentate N-Heterocyclic Carbenes -- 11.5.9 NHCs for Metathesis in Water and Protic Solvents -- References -- 12 Ruthenium N-Heterocyclic Carbene Complexes for the Catalysis of Nonmetathesis Organic Transformations -- 12.1 Introduction -- 12.2 Transfer Hydrogenation -- 12.3 Direct Hydrogenation (and Hydrosilylation) -- 12.4 Borrowing Hydrogen -- 12.5 Alcohol Racemization -- 12.6 Arylation -- 12.7 Reactions of Alkynes -- 12.8 Isomerization of C=C Bonds -- 12.9 Allylic Substitution Reactions -- 12.10 Miscellaneous Reactions -- 12.11 Conclusions -- References -- 13 Nickel Complexes of N-Heterocyclic Carbenes -- 13.1 Introduction -- 13.2 Nickel-NHC Catalysts -- 13.2.1 In Situ Methods to Generate Ni-NHC Complexes -- 13.2.2 Discrete Ni(0)-NHC Catalysts -- 13.2.2.1 Catalysts Derived from Nickel(0) and Nickel(II) Sources -- 13.2.2.2 Nickel(0)-NHC Complexes Stabilized by π Systems -- 13.2.3 Discrete Ni(I)-NHC Catalysts -- 13.2.4 Discrete Ni(II)-NHC Catalysts -- 13.3 Cross-Coupling Reactions -- 13.3.1 Carbon-Carbon Bond Forming Reactions -- 13.3.1.1 Kumada-Corriu Coupling Reaction -- 13.3.1.2 Suzuki-Miyaura Coupling Reaction -- 13.3.1.3 Negishi Coupling Reaction -- 13.3.1.4 Heck Reaction -- 13.3.2 Carbon-Heteroatom Bond-Forming Reactions.

13.3.2.1 Carbon-Nitrogen Bond-Forming Reactions.
Abstract:
This comprehensive reference and handbook covers in depth all major aspects of the use of N-heterocyclic carbene-complexes in organic synthesis: from the theoretical background to characterization, and from cross-coupling reactions to olefin metathesis. Edited by a leader and experienced scientist in the field of homogeneous catalysis and use of NHCs, this is an essential tool for every academic and industrial synthetic chemist.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: