
Interactive Displays : Natural Human-Interface Technologies.
Title:
Interactive Displays : Natural Human-Interface Technologies.
Author:
Bhowmik, Achintya K.
ISBN:
9781118706220
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (425 pages)
Series:
Wiley Series in Display Technology
Contents:
Cover -- Title Page -- Copyright -- Contents -- About the Author -- List of Contributors -- Series Editor's Foreword -- Preface -- List of Acronyms -- Chapter 1 Senses, Perception, and Natural Human-Interfaces for Interactive Displays -- 1.1 Introduction -- 1.2 Human Senses and Perception -- 1.3 Human Interface Technologies -- 1.3.1 Legacy Input Devices -- 1.3.2 Touch-based Interactions -- 1.3.3 Voice-based Interactions -- 1.3.4 Vision-based Interactions -- 1.3.5 Multimodal Interactions -- 1.4 Towards "True'' 3D Interactive Displays -- 1.5 Summary -- References -- Chapter 2 Touch Sensing -- 2.1 Introduction -- 2.2 Introduction to Touch Technologies -- 2.2.1 Touchscreens -- 2.2.2 Classifying Touch Technologies by Size and Application -- 2.2.3 Classifying Touch Technologies by Materials and Structure -- 2.2.4 Classifying Touch Technologies by the Physical Quantity Being Measured -- 2.2.5 Classifying Touch Technologies by Their Sensing Capabilities -- 2.2.6 The Future of Touch Technologies -- 2.3 History of Touch Technologies -- 2.4 Capacitive Touch Technologies -- 2.4.1 Projected Capacitive (P-Cap) -- 2.4.2 Surface Capacitive -- 2.5 Resistive Touch Technologies -- 2.5.1 Analog Resistive -- 2.5.2 Digital Multi-touch Resistive (DMR) -- 2.5.3 Analog Multi-touch Resistive (AMR) -- 2.6 Acoustic Touch Technologies -- 2.6.1 Surface Acoustic Wave (SAW) -- 2.6.2 Acoustic Pulse Recognition (APR) -- 2.6.3 Dispersive Signal Technology (DST) -- 2.7 Optical Touch Technologies -- 2.7.1 Traditional Infrared -- 2.7.2 Multi-touch Infrared -- 2.7.3 Camera-based Optical -- 2.7.4 In-glass Optical (Planar Scatter Detection - PSD) -- 2.7.5 Vision-based Optical -- 2.8 Embedded Touch Technologies -- 2.8.1 On-cell Mutual-capacitive -- 2.8.2 Hybrid In-cell/On-cell Mutual-capacitive -- 2.8.3 In-cell Mutual-capacitive.
2.8.4 In-cell Light Sensing -- 2.9 Other Touch Technologies -- 2.9.1 Force-sensing -- 2.9.2 Combinations of Touch Technologies -- 2.10 Summary -- 2.11 Appendix -- References -- Chapter 3 Voice in the User Interface -- 3.1 Introduction -- 3.2 Voice Recognition -- 3.2.1 Nature of Speech -- 3.2.2 Acoustic Model and Front-end -- 3.2.3 Aligning Speech to HMMs -- 3.2.4 Language Model -- 3.2.5 Search: Solving Crosswords at 1000 Words a Second -- 3.2.6 Training Acoustic and Language Models -- 3.2.7 Adapting Acoustic and Language Models for Speaker Dependent Recognition -- 3.2.8 Alternatives to the "Canonical'' System -- 3.2.9 Performance -- 3.3 Deep Neural Networks for Voice Recognition -- 3.4 Hardware Optimization -- 3.4.1 Lower Power Wake-up Computation -- 3.4.2 Hardware Optimization for Specific Computations -- 3.5 Signal Enhancement Techniques for Robust Voice Recognition -- 3.5.1 Robust Voice Recognition -- 3.5.2 Single-channel Noise Suppression -- 3.5.3 Multi-channel Noise Suppression -- 3.5.4 Noise Cancellation -- 3.5.5 Acoustic Echo Cancellation -- 3.5.6 Beamforming -- 3.6 Voice Biometrics -- 3.6.1 Introduction -- 3.6.2 Existing Challenges to Voice Biometrics -- 3.6.3 New Areas of Research in Voice Biometrics -- 3.7 Speech Synthesis -- 3.8 Natural Language Understanding -- 3.8.1 Mixed Initiative Conversations -- 3.8.2 Limitations of Slot and Filler Technology -- 3.9 Multi-turn Dialog Management -- 3.10 Planning and Reasoning -- 3.10.1 Technical Challenges -- 3.10.2 Semantic Analysis and Discourse Representation -- 3.10.3 Pragmatics -- 3.10.4 Dialog Management as Collaboration -- 3.10.5 Planning and Re-planning -- 3.10.6 Knowledge Representation and Reasoning -- 3.10.7 Monitoring -- 3.10.8 Suggested Readings -- 3.11 Question Answering -- 3.11.1 Question Analysis.
3.11.2 Find Relevant Information -- 3.11.3 Answers and Evidence -- 3.11.4 Presenting the Answer -- 3.12 Distributed Voice Interface Architecture -- 3.12.1 Distributed User Interfaces -- 3.12.2 Distributed Speech and Language Technology -- 3.13 Conclusion -- Acknowledgements -- References -- Chapter 4 Visual Sensing and Gesture Interactions -- 4.1 Introduction -- 4.2 Imaging Technologies: 2D and 3D -- 4.3 Interacting with Gestures -- 4.4 Summary -- References -- Chapter 5 Real-Time 3D Sensing With Structured Light Techniques -- 5.1 Introduction -- 5.2 Structured Pattern Codifications -- 5.2.1 2D Pseudo-random Codifications -- 5.2.2 Binary Structured Codifications -- 5.2.3 N-ary Codifications -- 5.2.4 Continuous Sinusoidal Phase Codifications -- 5.3 Structured Light System Calibration -- 5.4 Examples of 3D Sensing with DFP Techniques -- 5.5 Real-Time 3D Sensing Techniques -- 5.5.1 Fundamentals of Digital-light-processing (DLP) Technology -- 5.5.2 Real-Time 3D Data Acquisition -- 5.5.3 Real-Time 3D Data Processing and Visualization -- 5.5.4 Example of Real-Time 3D Sensing -- 5.6 Real-Time 3D Sensing for Human Computer Interaction Applications -- 5.6.1 Real-Time 3D Facial Expression Capture and its HCI Implications -- 5.6.2 Real-Time 3D Body Part Gesture Capture and its HCI Implications -- 5.6.3 Concluding Human Computer Interaction Implications -- 5.7 Some Recent Advancements -- 5.7.1 Real-Time 3D Sensing and Natural 2D Color Texture Capture -- 5.7.2 Superfast 3D Sensing -- 5.8 Summary -- Acknowledgements -- References -- Chapter 6 Real-Time Stereo 3D Imaging Techniques -- 6.1 Introduction -- 6.2 Background -- 6.3 Structure of Stereo Correspondence Algorithms -- 6.3.1 Matching Cost Computation -- 6.3.2 Matching Cost Aggregation -- 6.4 Categorization of Characteristics -- 6.4.1 Depth Estimation Density.
6.4.2 Optimization Strategy -- 6.5 Categorization of Implementation Platform -- 6.5.1 CPU-only Methods -- 6.5.2 GPU-accelerated Methods -- 6.5.3 Hardware Implementations (FPGAs, ASICs) -- 6.6 Conclusion -- References -- Chapter 7 Time-of-Flight 3D-Imaging Techniques -- 7.1 Introduction -- 7.2 Time-of-Flight 3D Sensing -- 7.3 Pulsed Time-of-Flight Method -- 7.4 Continuous Time-of-Flight Method -- 7.5 Calculations -- 7.6 Accuracy -- 7.7 Limitations and Improvements -- 7.7.1 TOF Challenges -- 7.7.2 Theoretical Limits -- 7.7.3 Distance Aliasing -- 7.7.4 Multi-path and Scattering -- 7.7.5 Power Budget and Optimization -- 7.8 Time-of-Flight Camera Components -- 7.9 Typical Values -- 7.9.1 Light Power Range -- 7.9.2 Background Light -- 7.10 Current State of the Art -- 7.11 Conclusion -- References -- Chapter 8 Eye Gaze Tracking -- 8.1 Introduction and Motivation -- 8.2 The Eyes -- 8.3 Eye Trackers -- 8.3.1 Types of Eye Trackers -- 8.3.2 Corneal Reflection Method -- 8.4 Objections and Obstacles -- 8.4.1 Human Aspects -- 8.4.2 Outdoor Use -- 8.4.3 Calibration -- 8.4.4 Accuracy -- 8.4.5 Midas Touch Problem -- 8.5 Eye Gaze Interaction Research -- 8.6 Gaze Pointing -- 8.6.1 Solving the Midas Touch Problem -- 8.6.2 Solving the Accuracy Issue -- 8.6.3 Comparison of Mouse and Gaze Pointing -- 8.6.4 Mouse and Gaze Coordination -- 8.6.5 Gaze Pointing Feedback -- 8.7 Gaze Gestures -- 8.7.1 The Concept of Gaze Gestures -- 8.7.2 Gesture Detection Algorithm -- 8.7.3 Human Ability to Perform Gaze Gestures -- 8.7.4 Gaze Gesture Alphabets -- 8.7.5 Gesture Separation from Natural Eye Movement -- 8.7.6 Applications for Gaze Gestures -- 8.8 Gaze as Context -- 8.8.1 Activity Recognition -- 8.8.2 Reading Detection -- 8.8.3 Attention Detection -- 8.8.4 Using Gaze Context -- 8.9 Outlook -- References.
Chapter 9 Multimodal Input for Perceptual User Interfaces -- 9.1 Introduction -- 9.2 Multimodal Interaction Types -- 9.3 Multimodal Interfaces -- 9.3.1 Touch Input -- 9.3.2 3D Gesture -- 9.3.3 Eye Tracking and Gaze -- 9.3.4 Facial Expressions -- 9.3.5 Brain-computer Input -- 9.4 Multimodal Integration Strategies -- 9.4.1 Frame-based Integration -- 9.4.2 Unification-based Integration -- 9.4.3 Procedural Integration -- 9.4.4 Symbolic/Statistical Integration -- 9.5 Usability Issues with Multimodal Interaction -- 9.6 Conclusion -- References -- Chapter 10 Multimodal Interaction in Biometrics: Technological and Usability Challenges -- 10.1 Introduction -- 10.1.1 Motivations for Identity Assurance -- 10.1.2 Biometrics -- 10.1.3 Application Characteristics of Multimodal Biometrics -- 10.1.4 2D and 3D Face Recognition -- 10.1.5 A Multimodal Case Study -- 10.1.6 Adaptation to Blind Subjects -- 10.1.7 Chapter Organization -- 10.2 Anatomy of the Mobile Biometry Platform -- 10.2.1 Face Analysis -- 10.2.2 Voice Analysis -- 10.2.3 Model Adaptation -- 10.2.4 Data Fusion -- 10.2.5 Mobile Platform Implementation -- 10.2.6 MoBio Database and Protocol -- 10.3 Case Study: Usability Study for the Visually Impaired -- 10.3.1 Impact of Head Pose Variations on Performance -- 10.3.2 User Interaction Module: Head Pose Quality Assessment -- 10.3.3 User-Interaction Module: Audio Feedback Mechanism -- 10.3.4 Usability Testing with the Visually Impaired -- 10.4 Discussions and Conclusions -- Acknowledgements -- References -- Chapter 11 Towards "True'' 3D Interactive Displays -- 11.1 Introduction -- 11.2 The Origins of Biological Vision -- 11.3 Light Field Imaging -- 11.4 Towards "True'' 3D Visual Displays -- 11.5 Interacting with Visual Content on a 3D Display -- 11.6 Summary -- References -- Index -- Supplemental Images -- EULA.
Abstract:
How we interface and interact with computing, communications and entertainment devices is going through revolutionary changes, with natural user inputs based on touch, voice, and vision replacing or augmenting the use of traditional interfaces based on the keyboard, mouse, joysticks, etc. As a result, displays are morphing from one-way interface devices that merely show visual content to two-way interaction devices that provide more engaging and immersive experiences. This book provides an in-depth coverage of the technologies, applications, and trends in the rapidly emerging field of interactive displays enabled by natural human-interfaces. Key features: Provides a definitive reference reading on all the touch technologies used in interactive displays, including their advantages, limitations, and future trends. Covers the fundamentals and applications of speech input, processing and recognition techniques enabling voice-based interactions. Offers a detailed review of the emerging vision-based sensing technologies, and user interactions using gestures of hands, body, face, and eye gazes. Discusses multi-modal natural user interface schemes which intuitively combine touch, voice, and vision for life-like interactions. Examines the requirements and technology status towards realizing "true" 3D immersive and interactive displays.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View