Cover image for Glass : Mechanics and Technology.
Glass : Mechanics and Technology.
Title:
Glass : Mechanics and Technology.
Author:
Le Bourhis, Eric.
ISBN:
9783527679423
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (419 pages)
Contents:
Glass: Mechanics and Technology -- Contents -- Foreword -- Preface to the Second Edition -- Preface to the First Edition -- Symbols and Definitions (Units in Parentheses) -- Physical Constants -- List of Abbreviations -- 1 Introduction -- 2 Glass, A Ceramic Material -- 2.1 Four Classes of Materials -- 2.2 Materials Properties -- 2.3 Selecting Materials -- 2.4 Performance Indices -- 2.5 Shape Factors in Mechanical Design -- 3 Glass Prehistory and History -- 3.1 Natural Glasses -- 3.2 Early Glasses -- 3.3 First Optical Glasses -- 3.4 Modern Glasses -- 3.4.1 Soda-Lime-Silica Glasses -- 3.4.2 Borosilicate and Aluminosilicate Glasses -- 4 Applications of Glass -- 4.1 Glazing -- 4.2 Containers -- 4.3 Optical Glass -- 4.4 Glass Fibres for Insulation and Reinforcement -- 4.5 Abrasive Tools -- 4.6 Glass Manufacturers -- 5 Glass Structure -- 5.1 Introduction -- 5.2 Silica Glass and Related Glasses -- 5.2.1 Glass Network -- 5.2.2 Glass Network Modification -- 5.2.3 Short-Range Order -- 5.3 Borate Glass and Related Glasses -- 5.4 Organic and Chalcogenide Glasses -- 5.5 Metallic Glasses -- 5.6 Avoiding Crystallization -- 5.6.1 Nucleation and Growth of Crystallized Phases -- 5.6.2 Nucleation of Crystallized Phases -- 5.6.2.1 Homogeneous Nucleation -- 5.6.2.2 Heterogeneous Nucleation -- 5.6.3 Crystal Growth -- 5.6.4 Temperature-Time-Transformation (TTT) Diagram -- 5.6.5 Devitrification -- 5.6.6 Factors That Favour Glass Formation -- 5.7 Vitroceramic Fabrication -- 5.7.1 Introduction -- 5.7.2 Conventional Method (Two Stages) -- 5.7.3 Modified Conventional Method (Single Stage) -- 5.7.4 Laser-Induced Method -- 5.8 Glass Surface -- 5.8.1 Surface Reaction -- 5.8.2 Molecular Diffusion -- 5.8.3 Glass Network Interaction with Water -- 5.8.3.1 Water Reaction -- 5.8.3.2 Ion Exchange -- 5.8.3.3 Glass Corrosion -- 5.8.4 Surface Properties -- 6 Glass Rheology.

6.1 Viscosity -- 6.1.1 Viscosity and Process -- 6.1.2 Viscosity Measurement -- 6.1.2.1 Rotation Viscometer -- 6.1.2.2 Falling Sphere Viscometer -- 6.1.2.3 Fibre Elongation Viscometer -- 6.1.3 Viscosity Variation with Temperature -- 6.1.3.1 Introduction -- 6.1.3.2 Fragility -- 6.1.3.3 VFT Empirical Formula -- 6.1.3.4 Microscopic Approach -- 6.2 Glass Transition and Its Observation -- 6.2.1 'Observing' the Glass Transition -- 6.2.2 Dilatometry -- 6.2.3 Differential Scanning Calorimetry -- 6.3 Viscous Response of Glass -- 6.4 Viscoelastic Response of Glass -- 6.4.1 Introduction -- 6.4.2 Maxwell and Kelvin Solids -- 6.4.3 Dynamic Mechanical Analysis -- 6.4.4 Modelling Real Solids -- 6.4.5 Functional Formulation -- 6.4.5.1 Creep -- 6.4.5.2 Stress Relaxation -- 6.4.5.3 Elastic-Viscoelastic Correspondence -- 6.4.5.4 Superposition Principle (Simple Thermorheological Behaviour) -- 6.5 Thermal Tempering of Glass -- 6.5.1 Introduction -- 6.5.2 Freezing Theory -- 6.5.3 Stress Relaxation -- 6.5.4 Structural Relaxation -- 6.6 Transient Stresses -- 6.7 Chemical Tempering of Glass -- 6.7.1 Introduction -- 6.7.2 Ion Exchange and Stress Build-Up -- 6.7.3 Stress Relaxation -- 6.7.4 Engineered Stress Profile Glasses -- 7 Mechanical Strength of Glass -- 7.1 Theoretical Strength -- 7.2 Tensile Resistance of Glass -- 7.3 Stress Concentration and Griffith Energy Balance -- 7.3.1 Stress Concentration -- 7.3.2 Energy Balance -- 7.4 Linear Elasticity Crack Tip Stress Field -- 7.5 SIF under Non-uniform Stress -- 7.6 Toughness Measurement -- 7.6.1 Compact Tension -- 7.6.2 Notch Beam Test -- 7.6.3 Double Torsion -- 7.7 Influence of Residual Stress on Strength and Fragmentation -- 7.7.1 Influence of Residual Thermal Stress on Strength -- 7.7.2 Influence of Residual Chemical Stress on Strength -- 7.7.3 Influence of Residual Stress on Fragmentation -- 7.7.4 Impact-Induced Fracture.

7.8 Statistical Weibull Analysis -- 7.8.1 Introduction -- 7.8.2 Functional Formulation -- 7.8.2.1 Uniform Tensile Stress -- 7.8.2.2 Non-uniform Tensile Stress -- 7.8.3 Population of Flaws -- 8 Contact Resistance of Glass -- 8.1 Sharp and Blunt Contact -- 8.1.1 Introduction -- 8.1.2 Spherical Indentation -- 8.1.2.1 Elastic Loading -- 8.1.2.2 Hertz Fracture and Indentation Toughness -- 8.1.3 Sharp Indentation -- 8.1.3.1 Elastic Loading -- 8.1.3.2 Elastic-Plastic Loading -- 8.1.3.3 Hardness -- 8.1.3.4 Radial-Median Cracking -- 8.1.3.5 Indentation Toughness -- 8.1.3.6 Lateral Cracking and Chipping -- 8.1.3.7 Brittleness Index -- 8.2 Sharp Contact Resistance -- 8.3 Scratch Resistance -- 8.4 Abrasion Resistance -- 8.5 Introducing a Controlled and Critical Surface Flaw -- 8.6 Cutting and Drilling of Glass -- 9 Ageing of Glass -- 9.1 Fatigue in Glass -- 9.1.1 Static Fatigue -- 9.1.2 Testing Methods -- 9.2 Stress Corrosion -- 9.2.1 Introduction (Domain III) -- 9.2.2 Domains O and I: Reaction Controlled -- 9.2.3 Domain II: Transport Controlled -- 9.3 Charles and Hillig Theory -- 9.4 Lifetime under Static Fatigue -- 9.5 Applications -- 9.6 NiS Phase Transformation -- 9.7 Crack Healing -- 10 Mechanics of Glass Processes -- 10.1 Introduction -- 10.1.1 Batching -- 10.1.2 Melting -- 10.1.3 Fining -- 10.1.4 Forming -- 10.2 Float Process -- 10.3 Fusion Draw -- 10.4 Container Process -- 10.4.1 Pressing -- 10.4.2 Press-and-Blow, Blow-and-Blow Processes -- 10.5 Fibre Process -- 10.5.1 Tensile Drawing -- 10.5.2 Centrifugal Drawing -- 11 Production Control of Residual Stresses -- 11.1 Introduction -- 11.2 Residual Stresses in Flat Glass -- 11.3 Basics of Photoelasticity in Flat Glass -- 11.4 Stress Meters -- 11.4.1 Edge Stress Meters -- 11.4.2 Surface Stress Meters -- 12 High-Tech Products and R&D -- 12.1 Market Trend-Driven R&D -- 12.2 Flat Displays.

12.2.1 Liquid Crystal Displays -- 12.2.2 Plasma Display Panels -- 12.2.3 Glass Stability -- 12.2.4 Glass Shock and Damage Resistances -- 12.3 Thin-Film Technology -- 12.3.1 Chemical Vapour Deposition -- 12.3.2 Physical Vapour Deposition -- 12.3.3 Sol-Gel Routes -- 12.4 Residual Stresses in Thin Films -- 12.5 Summary -- 13 Conclusion -- Appendix A: Light Absorption, Dispersion and Polarization -- A.1 Electromagnetic Spectrum -- A.2 Light Absorption -- A.3 Light Dispersion -- A.4 Light Polarization -- Appendix B: Atomic Structure and Bond Formation -- B.1 Atomic Structure -- B.2 Mendeleev Table -- B.3 Bond Formation -- Appendix C: Thermal Expansion and Elasticity -- C.1 The α-E Trend -- C.2 Qualitative Approach -- C.3 Expansion Modelling -- C.4 Differential Expansion Measurement -- Appendix D: Falling Sphere Viscometer and Fining of Glass -- D.1 Falling Sphere -- D.1.1 Asymptotic Regime -- D.1.2 Transient Regime -- D.1.3 Faxen's Side Correction -- D.2 Fining of Glass -- Appendix E: Theoretical Strength of a Solid -- Appendix F: Weibull Analysis -- Appendix G: Photoelastic Set-Up for Lectures -- G.1 Set-Up for Photoelastic Projection -- G.2 Example of a Beam under Flexion (Transient Stresses) -- G.3 Example of Tempered Specimens (Residual Stresses) -- Appendix H: Instrumented Nanoindentation Applied to Thin Films -- H.1 Instrumented Nanoindentation -- H.2 Indentation Strain Field -- H.3 Hardness, Yield Stress and Representative Flow Stress -- H.4 Coating-Substrate Composite Response -- H.5 Time-Dependent Response -- H.5.1 Viscoelastic Indentation Curves -- H.5.2 Viscous Elastic-Plastic Indentation F(h) Curves -- H.6 Elastic-Plastic Ratios -- Appendix I: Strain and Stress -- I.1 Stress and Strain -- I.2 Stress and Strain Tensors -- I.3 Uniaxial Tensile Test -- I.4 Simple Shear -- I.5 Plane Stress -- I.6 Hydrostatic Pressure and Stress Deviator.

I.7 Generalized Hooke's Law -- I.8 Kelvin and Maxwell Models -- I.9 Generalized Maxwell Model -- Appendix J: Flow and Plasticity in Glass -- J.1 Introduction -- J.2 From Newtonian to Non-Newtonian Flow -- J.3 From Homogeneous to Heterogeneous Flow -- Appendix K: Finite Element Analysis -- K.1 FEM of the Pressing of a Parison -- K.2 FEM of the Precision Moulding of a Glass Lens -- K.3 FEM of Fracture -- K.4 FEM of Contact Loading -- Appendix L: X-Ray Diffraction Analysis of Thin-Film Residual Stresses -- L.1 Thin-Film Stress and Strain -- L.2 X-Ray Diffraction Method -- L.3 The ε-sin2 ψ Method -- Appendix M: Diffusion -- M.1 Diffusion Laws -- M.2 Steady-State Diffusion -- M.3 Non-Steady-State Diffusion -- Glossary -- References -- Index -- End User License Agreement.
Abstract:
Glass is a material with essentially unlimited application possibilities. This second edition of a comprehensive reference in glass science, points out the correlation between the performance of industrial processes and practice-relevant properties, such as strength and optical properties. Interdisciplinary in his approach, the author discusses both the science and technology, starting with an outline of history and applications, glass structure, and rheology. The sections on properties include mechanical strength and contact resistance, ageing, mechanics of glass processes, the production and control of residual stresses, high-tech products, and current research and development. Applications include glazing, packaging, optical glass, glass fibers for reinforcement, and abrasive tools. The development of touchscreen technology showed how important were the design and resistance of thin flexible glass and these new thin aluminosilicate glasses are also discussed.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: