Cover image for Advanced Materials for Agriculture, Food and Environmental Safety.
Advanced Materials for Agriculture, Food and Environmental Safety.
Title:
Advanced Materials for Agriculture, Food and Environmental Safety.
Author:
Tiwari, Ashutosh.
ISBN:
9781118773888
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (524 pages)
Series:
Advanced Material Series
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: Fundamental Methodologies -- 1 Layered Double Hydroxides and the Environment: An Overview -- 1.1 Introduction -- 1.2 Structure of Layered Double Hydroxides -- 1.3 Properties of Layered Double Hydroxides -- 1.4 Synthesis of Layered Double Hydroxides -- 1.4.1 Co-precipitation Method -- 1.4.2 Hydrothermal Synthesis -- 1.4.3 Urea Hydrolysis Method -- 1.4.4 Sol-Gel Method -- 1.4.5 Ion-Exchange Method -- 1.4.6 Rehydration Method -- 1.4.7 Miscellaneous Methods -- 1.5 Characterization of Layered Double Hydroxides -- 1.5.1 X-ray Diffraction -- 1.5.2 Fourier Transform Infrared Spectroscopy -- 1.5.3 Thermogravimetric Analysis and Differential Thermal Analysis -- 1.5.4 Other Techniques -- 1.6 Applications of Layered Double Hydroxides -- 1.6.1 Catalytic Applications -- 1.6.2 Agricultural Applications -- 1.6.3 Pharmaceutical Applications -- 1.6.4 Industrial Applications -- 1.6.5 Environmental Applications -- 1.7 Conclusions -- Acknowledgements -- References -- 2 Improvement of the Corrosion Resistance of Aluminium Alloys Applying Different Types of Silanes -- 2.1 Introduction -- 2.2 Silanes for Surface Treatment -- 2.2.1 Classification of Silanes -- 2.2.2 Surface Treatment and Silane Chemistry -- 2.2.3 Experimental Procedure -- 2.3 Materials, Methods and Experimentals -- 2.3.1 Materials -- 2.3.2 Preparation of Silane Solutions -- 2.3.3 Silane Treatment -- 2.4 Surface Analytics -- 2.5 Results and Discussion -- 2.5.1 Contact Angle -- 2.5.2 Characterization with SEM/EDX - FIB -- 2.5.3 Electrochemical Impedance Spectroscopy (EIS) Tests -- 2.5.4 Salt Spray Test -- 2.5.5 FTIR Spectroscopy -- 2.6 Conclusions -- Acknowledgements -- References -- 3 New Generation Material for the Removal of Arsenic from Water -- 3.1 Introduction -- 3.1.1 Properties of Arsenic [3-6].

3.1.2 World Health Organization Guidelines -- 3.1.3 Toxicity -- 3.1.4 Technologies -- 3.1.5 Adsorption Process -- 3.1.6 New Generation Materials -- 3.2 Arsenic Desorption/Sorbent Regeneration -- 3.2.1 Cost Evaluation -- 3.3 Conclusions -- Acknowledgement -- References -- 4 Prediction and Optimization of Heavy Clay Products Quality -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Raw Materials and Samples -- 4.2.2 Chemical and Technological Features -- 4.2.3 Second Order Polynomial Model and Analysis of Variance -- 4.2.4 Artificial Neural Network Modeling -- 4.2.5 Fuzzy Synthetic Optimization -- 4.3 Results and Discussions -- 4.3.1 Correlation Analysis -- 4.3.2 Analysis of Variance and SOP Models -- 4.3.3 Neurons in the ANN Hidden Layer -- 4.3.4 Simulation of the ANNs -- 4.3.5 Sensitivity Analysis -- 4.3.6 Fuzzy Synthetic Optimization -- 4.4 Conclusions -- Acknowledgement -- References -- 5 Enhancement of Physical and Mechanical Properties of Sugar Palm Fiber via Vacuum Resin Impregnation -- 5.1 Introduction -- 5.2 Experimental -- 5.2.1 Materials -- 5.2.2 Methods -- 5.3 Results and Discussion -- 5.3.1 Physical Properties of Impregnated Fiber -- 5.3.2 Tensile Properties of Impregnated Fibre -- 5.4 Conclusions -- Acknowledgments -- References -- 6 Environmentally-Friendly Acrylates-Based Polymer Latices -- 6.1 Introduction -- 6.1.1 Alkyds -- 6.1.2 Urethanes -- 6.1.3 Epoxies -- 6.1.4 Acrylics -- 6.2 Polymerization Techniques -- 6.2.1 Component of Emulsion Polymerization -- 6.2.2 Applications of Acrylic Polymers -- References -- Part 2: Inventive Nanotechnology -- 7 Nanoparticles for Trace Analysis of Toxins: Present and Future Scenario -- 7.1 Introduction -- 7.2 Nanoremediation Using TiO2 Nanoparticles -- 7.3 Gold Nanoparticles for Nanoremediation -- 7.4 Zero-Valent Iron Nanoparticles -- 7.5 Silicon Oxide Nanoparticles for Nanoremediation.

7.6 Other Materials for Nanoremediation -- 7.7 Conclusion -- References -- 8 Recent Developments in Gold Nanomaterial Catalysts for Oxidation Reaction through Green and Sustainable Routes -- 8.1 Introduction -- 8.1.1 Quantum Size Effects -- 8.1.2 Charge Transfer between Gold and Metal Oxide Support -- 8.1.3 Formation of Reactive Gold-Metal Oxide Perimeter Interfaces -- 8.2 Propylene Epoxidation Reaction -- 8.3 Reaction Mechanism -- 8.4 Glucose Oxidation -- 8.5 Alcohol Oxidation -- 8.5.1 Mechanism for Alcohol Oxidation Reaction -- 8.6 Conclusion -- References -- 9 Nanosized Metal Oxide-Based Adsorbents for Heavy Metal Removal: A Review -- 9.1 Introduction -- 9.2 Nanosized Metal Oxide -- 9.2.1 Nano Ferric Oxides (NFeOs) -- 9.2.2 Nano Manganese Oxides (NMnOs) -- 9.2.3 Nano Titanium Oxides (NTOs) -- 9.2.4 Nano Zinc Oxides (NZnOs) -- 9.2.5 Nano Aluminum Oxides -- 9.3 Hybrid Adsorbents -- 9.3.1 Bentonite-Based Hybrid Nano-Metal Oxide Nanocomposites (B-NMOs) -- 9.3.2 Polymer-Supported Nano-Metal Oxide Nanocomposites (P-NMOs) -- 9.3.3 Zeolites-Supported Nano Metal Oxide Nanocomposites (P-NMOs) -- 9.3.4 Metal Oxides-Based Nanocomposites -- 9.4 Conclusion -- References -- 10 Future Prospects of Phytosynthesized Transition Metal Nanoparticles as Novel Functional Agents for Textiles -- 10.1 Introduction -- 10.2 Synthesis of Transition Metal Nanoparticle Using Various Plant Parts -- 10.2.1 Silver - Most Versatile Transition Metal Nanoparticle Synthesized by Using Plants -- 10.2.2 Synthesis of Gold Nanoparticles -- 10.2.3 Gold/Silver Bimetallic Nanoparticles -- 10.2.4 Palladium Nanoparticles -- 10.2.5 Synthesis of Other Transition Metal Nanoparticles -- 10.3 Proposed Mechanisms -- 10.4 Transition Metal Nanoparticles as Novel Antimicrobial Agents for Textile Modifications -- 10.5 Concluding Remarks and Future Aspects -- References.

11 Functionalized Magnetic Nanoparticles for Heavy Metal Removal from Aqueous Solutions: Kinetics and Equilibrium Modeling -- 11.1 Introduction -- 11.2 Sources of Heavy Metals in the Environment -- 11.3 Toxicity to Human Health and Ecosystems -- 11.4 Magnetic Nanoparticles -- 11.4.1 Properties of Magnetic Nanoparticles -- 11.5 Synthesis of Magnetic Nanoparticles -- 11.5.1 Co-precipitation -- 11.5.2 Hydrothermal Synthesis -- 11.5.3 Microemulsion -- 11.5.4 Thermal Decomposition -- 11.6 Magnetic Nanoparticles in Wastewater Treatment -- 11.6.1 Magnetic Nanoparticles as Nanosorbents for Heavy Metals -- 11.7 Modeling of Adsorption: Kinetic and Isotherm Models -- 11.7.1 Kinetic Studies in Adsorption of Heavy Metals -- 11.7.2 Equilibrium Modeling of Adsorption -- 11.8 Thermodynamic Analysis -- 11.9 Metal Recovery and Regeneration of Magnetic Nanoparticles -- 11.10 Conclusions -- Acknowledgements -- References -- 12 Potential Application of Nanoparticles as Antipathogens -- 12.1 Introduction -- 12.1.1 Types of Pathogens -- 12.1.2 Virulence -- 12.1.3 Transmission -- 12.2 Applications of Nanoparticles -- 12.2.1 Nanoparticles in Drug Delivery -- 12.2.2 Role of Nanoparticles and Their Potential Application in Food Packaging -- 12.2.3 Nanoparticles Used in Agriculture -- 12.2.4 Nanotechnology for the Health Sector -- 12.2.5 Nanoparticles Applicable in the Area of Textile Fibers -- 12.2.6 Nanoparticles Used in Water Treatment -- 12.3 Nanoparticles in Biology -- 12.4 Uses and Advantages of Nanoparticles in Medicine -- 12.5 Antibacterial Properties of Nanomaterials -- 12.5.1 Gold Nanoparticles -- 12.5.2 Magnesium Oxide Nanoparticles -- 12.5.3 Copper Oxide Nanoparticles -- 12.5.4 Titanium Dioxide Nanoparticles -- 12.5.5 Zinc Oxide Nanoparticles -- 12.6 Antiviral properties of Nanoparticles -- 12.6.1 Silver -- 12.6.2 Selenium Nanoclusters -- 12.6.3 Metal Oxides.

12.6.4 N-phenyl- and N-benzoylthiourea Derivatives -- 12.6.5 FeO4/C12 Nanostructures and 2-((4-ethylphenoxy) methyl)-N-(substituted-phenyl carbamothioyl)-benzamides -- 12.6.6 Graphene Nanosheets -- 12.6.7 Photoactivated Carbon Nanotube-Porphyrin Conjugates -- 12.7 Antifungal Activity -- 12.7.1 Silver -- 12.8 Mechanism of Action of Nanoparticle inside the Body -- 12.9 Detecting the Antipathogenicity of Nanoparticles on Microorganisms in Vitro -- 12.10 Types of Nanoparticles -- 12.11 Synthesis of Nanoparticles by Conventional Methods -- 12.11.1 Top-down approach -- 12.11.2 Bottom-up approach -- 12.12 Biological Synthesis of Nanoparticles -- 12.12.1 Extraction of Nanoparticles -- 12.13 Characterizations of Nanoparticles -- 12.14 Biocompatibility of Nanoparticles -- 12.15 Toxic Effects of Nanoparticles -- 12.15.1 Respiratory System -- 12.15.2 Translocation of nanoparticle to the Blood Stream and Central Nervous System -- 12.15.3 Gastrointestinal Tract and Skin -- 12.16 Conclusion -- References -- 13 Gas Barrier Properties of Biopolymer-based Nanocomposites: Application in Food Packaging -- 13.1 Introduction -- 13.2 Experimental -- 13.3 Objective -- 13.4 Background of Food Packaging -- 13.4.1 Oxygen Penetration -- 13.4.2 Antimicrobial Systems -- 13.4.3 Detection of Gases Produced by Food Spoilage -- 13.4.4 Different Fillers for Nanocomposites -- 13.5 Conclusion -- References -- 14 Application of Zero-valent Iron Nanoparticles for Environmental Clean Up -- 14.1 Introduction -- 14.2 Zero-Valent Iron Nanoparticles: A Versatile Tool for Environmental Clean Up -- 14.2.1 Iron Chemistry -- 14.2.2 Synthesis -- 14.2.3 Structure -- 14.2.4 Environmental Application -- 14.3 Reduction Mechanisms and Pathways -- 14.4 Pilot- and Field-Scale Studies -- 14.5 Transport of nFe0 in Environment -- 14.6 Integrated Approach -- 14.7 Challenges Ahead -- 14.7.1 Toxicity.

14.7.2 Fate and Behavior in Environment.
Abstract:
The book focuses on the role of advanced materials in the food, water and environmental applications.  The monitoring of harmful organisms and toxicants in water, food and beverages is mainly discussed in the respective chapters. The senior contributors write on the following topics: Layered double hydroxides and environment Corrosion resistance of aluminium alloys of silanes New generation material for the removal of arsenic from water Prediction and optimization of heavy clay products quality Enhancement of physical and mechanical properties of fiber Environment friendly acrylates latices Nanoparticles for trace analysis of toxins Recent development on gold nanomaterial as catalyst  Nanosized metal oxide based adsorbents for heavy metal removal Phytosynthesized transition metal nanoparticles- novel functional agents for textiles Kinetics and equilibrium modeling Magnetic nanoparticles for heavy metal removal Potential applications of nanoparticles as antipathogens Gas barrier properties of biopolymer based nanocomposites: Application in food packing Application of zero-valent iron nanoparticles for environmental clean up Environmental application of novel TiO2 nanoparticles.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: