
Optimal Structural Analysis.
Title:
Optimal Structural Analysis.
Author:
Kaveh, Ali.
ISBN:
9780470033296
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (534 pages)
Series:
Rsp Ser. ; v.24
Rsp Ser.
Contents:
Optimal Structural Analysis -- Copyright -- Contents -- Foreword of the first edition -- Preface -- List of Abbreviations -- Chapter 1 Basic Concepts and Theorems of Structural Analysis -- 1.1 Introduction -- 1.1.1 Definitions -- 1.1.2 Structural Analysis and Design -- 1.2 General Concepts of Structural Analysis -- 1.2.1 Main Steps of Structural Analysis -- 1.2.2 Member Force and Displacements -- 1.2.3 Member Flexibility and Stiffness Matrices -- 1.3 Important Structural Theorems -- 1.3.1 Work and Energy -- 1.3.2 Castigliano's Theorem -- 1.3.3 Principle of Virtual Work -- 1.3.4 Contragradient Principle -- 1.3.5 Reciprocal Work Theorem -- Exercises -- Chapter 2 Static Indeterminacy and Rigidity of Skeletal Structures -- 2.1 Introduction -- 2.2 Mathematical Model of a Skeletal Structure -- 2.3 Expansion Process for Determining the Degree of Statical Indeterminacy -- 2.3.1 Classical Formulae -- 2.3.2 A Unifying Function -- 2.3.3 An Expansion Process -- 2.3.4 An Intersection Theorem -- 2.3.5 A Method for Determining the DSI of Structures -- 2.4 The DSI of Structures: Special Methods -- 2.5 Space Structures and their Planar Drawings -- 2.5.1 Admissible Drawing of a Space Structure -- 2.5.2 The DSI of Frames -- 2.5.3 The DSI of Space Trusses -- 2.5.4 A Mixed Planar drawing - Expansion Method -- 2.6 Rigidity of Structures -- 2.7 Rigidity of Planar Trusses -- 2.7.1 Complete Matching Method -- 2.7.2 Decomposition Method -- 2.7.3 Grid-form Trusses with Bracings -- 2.8 Connectivity and Rigidity -- Exercises -- Chapter 3 Optimal Force Method of Structural Analysis -- 3.1 Introduction -- 3.2 Formulation of the Force Method -- 3.2.1 Equilibrium Equations -- 3.2.2 Member Flexibility Matrices -- 3.2.3 Explicit Method for Imposing Compatibility -- 3.2.4 Implicit Approach for Imposing Compatibility -- 3.2.5 Structural Flexibility Matrices.
3.2.6 Computational Procedure -- 3.2.7 Optimal Force Method -- 3.3 Force Method for the Analysis of Frame Structures -- 3.3.1 Minimal and Optimal Cycle Bases -- 3.3.2 Selection of Minimal and Subminimal Cycle Bases -- 3.3.3 Examples -- 3.3.4 Optimal and Suboptimal Cycle Bases -- 3.3.5 Examples -- 3.3.6 An Improved Turn-Back Method for the Formation of Cycle Bases -- 3.3.7 Examples -- 3.3.8 An Algebraic Graph-Theoretical Method for Cycle Basis Selection -- 3.3.9 Examples -- 3.4 Conditioning of the Flexibility Matrices -- 3.4.1 Condition Number -- 3.4.2 Weighted Graph and an Admissible Member -- 3.4.3 Optimally Conditioned Cycle Bases -- 3.4.4 Formulation of the Conditioning Problem -- 3.4.5 Suboptimally Conditioned Cycle Bases -- 3.4.6 Examples -- 3.4.7 Formation of B0 and B1 matrices -- 3.5 Generalised Cycle Bases of a Graph -- 3.5.1 Definitions -- 3.5.2 Minimal and Optimal Generalized Cycle Bases -- 3.6 Force Method for the Analysis of Pin-jointed Planar Trusses -- 3.6.1 Associate Graphs for Selection of a Suboptimal GCB -- 3.6.2 Minimal GCB of a Graph -- 3.6.3 Selection of a Subminimal GCB: Practical Methods -- 3.7 Force Method of Analysis for General Structures -- 3.7.1 Flexibility Matrices of Finite Elements -- 3.7.2 Algebraic Methods -- Exercises -- Chapter 4 Optimal Displacement Method of Structural Analysis -- 4.1 Introduction -- 4.2 Formulation -- 4.2.1 Coordinate Systems Transformation -- 4.2.2 Element Stiffness Matrix using Unit Displacement Method -- 4.2.3 Element Stiffness Matrix using Castigliano's Theorem -- 4.2.4 Stiffness Matrix of a Structure -- 4.2.5 Stiffness Matrix of a Structure: An Algorithmic Approach -- 4.3 Transformation of Stiffness Matrices -- 4.3.1 Stiffness Matrix of a Bar Element -- 4.3.2 Stiffness Matrix of a Beam Element -- 4.4 Displacement Method of Analysis -- 4.4.1 Boundary Conditions -- 4.4.2 General Loading.
4.5 Stiffness Matrix of a Finite Element -- 4.5.1 Stiffness Matrix of a Triangular Element -- 4.6 Computational Aspects of the Matrix Displacement Method -- 4.6.1 Algorithm -- 4.6.2 Example -- 4.7 Optimally Conditioned Cutset Bases -- 4.7.1 Mathematical Formulation of the Problem -- 4.7.2 Suboptimally Conditioned Cutset Bases -- 4.7.3 Algorithms -- 4.7.4 Example -- Exercises -- Chapter 5 Ordering for Optimal Patterns of Structural Matrices: Graph Theory Methods -- 5.1 Introduction -- 5.2 Bandwidth Optimisation -- 5.3 Preliminaries -- 5.4 A Shortest Route Tree and its Properties -- 5.5 Nodal Ordering for Bandwidth Reduction -- 5.5.1 A Good Starting Node -- 5.5.2 Primary Nodal Decomposition -- 5.5.3 Transversal P of an SRT -- 5.5.4 Nodal Ordering -- 5.5.5 Example -- 5.6 Finite Element Nodal Ordering for Bandwidth Optimisation -- 5.6.1 Element Clique Graph Method (ECGM) -- 5.6.2 Skeleton Graph Method (SGM) -- 5.6.3 Element Star Graph Method (ESGM) -- 5.6.4 Element Wheel Graph Method (EWGM) -- 5.6.5 Partially Triangulated Graph Method (PTGM) -- 5.6.6 Triangulated Graph Method (TGM) -- 5.6.7 Natural Associate Graph Method (NAGM) -- 5.6.8 Incidence Graph Method (IGM) -- 5.6.9 Representative Graph Method (RGM) -- 5.6.10 Discussion of the Analysis of Algorithms -- 5.6.11 Computational Results -- 5.6.12 Discussions -- 5.7 Finite Element Nodal Ordering for Profile Optimisation -- 5.7.1 Introduction -- 5.7.2 Graph Nodal Numbering for Profile Reduction -- 5.7.3 Nodal Ordering with Element Clique Graph (NOECG) -- 5.7.4 Nodal Ordering with Skeleton Graph (NOSG) -- 5.7.5 Nodal Ordering with Element Star Graph (NOESG) -- 5.7.6 Nodal Ordering with Element Wheel Graph (NOEWG) -- 5.7.7 Nodal Ordering with Partially Triangulated Graph (NOPTG) -- 5.7.8 Nodal Ordering with Triangulated Graph (NOTG) -- 5.7.9 Nodal Ordering with Natural Associate Graph (NONAG).
5.7.10 Nodal Ordering with Incidence Graph (NOIG) -- 5.7.11 Nodal Ordering with Representative Graph (NORG) -- 5.7.12 Nodal Ordering with Element Clique Representative Graph (NOECRG) -- 5.7.13 Computational Results -- 5.7.14 Discussions -- 5.8 Element Ordering for Frontwidth Reduction -- 5.8.1 Definitions -- 5.8.2 Different Strategies for Frontwidth Reduction -- 5.8.3 Efficient Root Selection -- 5.8.4 Algorithm for Frontwidth Reduction -- 5.8.5 Complexity of the Algorithm -- 5.8.6 Computational Results -- 5.8.7 Discussions -- 5.9 Element Ordering for Bandwidth Optimisation of Flexibility Matrices -- 5.9.1 An Associate Graph -- 5.9.2 Distance Number of an Element -- 5.9.3 Element Ordering Algorithms -- 5.10 Bandwidth Reduction for Rectangular Matrices -- 5.10.1 Definitions -- 5.10.2 Algorithms -- 5.10.3 Examples -- 5.10.4 Bandwidth Reduction of Finite Element Models -- 5.11 Graph-Theoretical interpretation of Gaussian Elimination -- Exercises -- Chapter 6 Ordering for Optimal Patterns of Structural Matrices: Algebraic Graph Theory Methods -- 6.1 Introduction -- 6.2 Adjacency Matrix of a Graph for Nodal Ordering -- 6.2.1 Basic Concepts and Definition -- 6.2.2 A Good Starting Node -- 6.2.3 Primary Nodal Decomposition -- 6.2.4 Transversal P of an SRT -- 6.2.5 Nodal Ordering -- 6.2.6 Example -- 6.3 Laplacian Matrix of a Graph for Nodal Ordering -- 6.3.1 Basic Concepts and Definitions -- 6.3.2 Nodal Numbering Algorithm -- 6.3.3 Example -- 6.4 A Hybrid Method for Ordering -- 6.4.1 Development of the Method -- 6.4.2 Numerical Results -- 6.4.3 Discussions -- Exercises -- Chapter 7 Decomposition for Parallel Computing: Graph Theory Methods -- 7.1 Introduction -- 7.2 Earlier Works on Partitioning -- 7.2.1 Nested Dissection -- 7.2.2 A modified Level-Tree Separator Algorithm -- 7.3 Substructuring for Parallel Analysis of Skeletal Structures -- 7.3.1 Introduction.
7.3.2 Substructuring Displacement Method -- 7.3.3 Methods of Substructuring -- 7.3.4 Main Algorithm for Substructuring -- 7.3.5 Examples -- 7.3.6 Simplified Algorithm for Substructuring -- 7.3.7 Greedy Type Algorithm -- 7.4 Domain Decomposition for Finite Element Analysis -- 7.4.1 Introduction -- 7.4.2 A Graph-Based Method for Subdomaining -- 7.4.3 Renumbering of Decomposed Finite Element Models -- 7.4.4 Complexity Analysis of the Graph-Based Method -- 7.4.5 Computational Results of the Graph-Based Method -- 7.4.6 Discussions on the Graph-Based Method -- 7.4.7 Engineering-Based Method for Subdomaining -- 7.4.8 Genre Structure Algorithm -- 7.4.9 Example -- 7.4.10 Complexity Analysis of the Engineering-Based Method -- 7.4.11 Computational Results of the Engineering-Based Method -- 7.4.12 Discussions -- 7.5 Substructuring: Force Method -- 7.5.1 Algorithm for the Force Method Substructuring -- 7.5.2 Examples -- 7.6 Substructuring for Dynamic Analysis -- 7.6.1 Modal Analysis of a Substructure -- 7.6.2 Partitioning of the Transfer Matrix H(w) -- 7.6.3 Dynamic Equation of the Entire Structure -- 7.6.4 Examples -- Exercises -- Chapter 8 Decomposition for Parallel Computing: Algebraic Graph Theory Methods -- 8.1 Introduction -- 8.2 Algebraic Graph Theory for Subdomaining -- 8.2.1 Basic Definitions and Concepts -- 8.2.2 Lanczos Method -- 8.2.3 Recursive Spectral Bisection Partitioning Algorithm -- 8.2.4 Recursive Spectral Sequential-Cut Partitioning Algorithm -- 8.2.5 Recursive Spectral Two-way Partitioning Algorithm -- 8.3 Mixed Method for Subdomaining -- 8.3.1 Introduction -- 8.3.2 Mixed Method for Graph Bisection -- 8.3.3 Examples -- 8.3.4 Discussions -- 8.4 Spectral Bisection for Adaptive FEM -- Weighted Graphs -- 8.4.1 Basic Concepts -- 8.4.2 Partitioning of Adaptive FE Meshes -- 8.4.3 Computational Results.
8.5 Spectral Trisection of Finite Element Models.
Abstract:
This second edition of the highly acclaimed and successful first edition, deals primarily with the analysis of structural engineering systems, with applicable methods to other types of structures. The concepts presented in the book are not only relevant to skeletal structures but can equally be used for the analysis of other systems such as hydraulic and electrical networks. The book has been substantially revised to include recent developments and applications of the algebraic graph theory and matroids.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View