Cover image for Meteorological Measurements and Instrumentation.
Meteorological Measurements and Instrumentation.
Title:
Meteorological Measurements and Instrumentation.
Author:
Harrison, Giles.
ISBN:
9781118745786
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (278 pages)
Series:
Advancing Weather and Climate Science
Contents:
Meteorological Measurements and Instrumentation -- Contents -- Series Foreword -- Advancing Weather and Climate Science -- Preface -- Acknowledgements -- Disclaimer -- 1 Introduction -- 1.1 The instrumental age -- 1.2 Measurements and the climate record -- 1.3 Clouds and rainfall -- 1.4 Standardisation of air temperature measurements -- 1.5 Upper air measurements -- 1.5.1 Manned balloon ascents -- 1.5.2 Self-reporting upper air instruments -- 1.6 Scope and structure -- 2 Principles of Measurement and Instrumentation -- 2.1 Instruments and measurement systems -- 2.1.1 Instrument response characterisation -- 2.1.2 Measurement quality -- 2.2 Instrument response time -- 2.2.1 Response to a step change -- 2.2.2 Response to an oscillation -- 2.3 Deriving the standard error -- 2.3.1 Sample mean -- 2.3.2 Standard error -- 2.3.3 Quoting results -- 2.4 Calculations combining uncertainties -- 2.4.1 Sums and differences -- 2.4.2 Products and quotients -- 2.4.3 Uncertainties from functions -- 2.5 Calibration experiments -- 3 Electronics and Analogue Signal Processing -- 3.1 Voltage measurements -- 3.2 Signal conditioning -- 3.2.1 Operational amplifiers -- 3.2.2 Operational amplifier fundamentals -- 3.2.3 Signal amplification -- 3.2.4 Buffer amplifiers -- 3.2.5 Inverting amplifier -- 3.2.6 Line driving -- 3.2.7 Power supplies -- 3.3 Voltage signals -- 3.3.1 Electrometers -- 3.3.2 Microvolt amplifier -- 3.4 Current measurement -- 3.4.1 Current to voltage conversion -- 3.4.2 Photocurrent amplifier -- 3.4.3 Logarithmic measurements -- 3.4.4 Calibration currents -- 3.5 Resistance measurement -- 3.5.1 Thermistor resistance measurement -- 3.5.2 Resistance bridge methods -- 3.6 Oscillatory signals -- 3.6.1 Oscillators -- 3.6.2 Phase-locked loops -- 3.6.3 Frequency to voltage conversion -- 3.7 Physical implementation.

4 Data Acquisition Systems and Initial Data Analysis -- 4.1 Data acquisition -- 4.1.1 Count data -- 4.1.2 Frequency data -- 4.1.3 Interval data -- 4.1.4 Voltage data -- 4.1.5 Sampling -- 4.1.6 Time synchronisation -- 4.2 Custom data logging systems -- 4.2.1 Data acquisition cards -- 4.2.2 Microcontroller systems -- 4.2.3 Automatic Weather Stations -- 4.3 Management of data files -- 4.3.1 Data logger programming -- 4.3.2 Data transfer -- 4.3.3 Data file considerations -- 4.4 Preliminary data examination -- 4.4.1 In situ calibration -- 4.4.2 Time series -- 4.4.3 Irregular and intermittent time series -- 4.4.4 Further data analysis -- 5 Temperature -- 5.1 The Celsius temperature scale -- 5.2 Liquid in glass thermometry -- 5.2.1 Fixed interval temperature scales -- 5.2.2 Liquid-in-glass thermometers -- 5.3 Electrical temperature sensors -- 5.3.1 Thermocouple -- 5.3.2 Semiconductor -- 5.3.3 Thermistor -- 5.3.4 Metal resistance thermometry -- 5.4 Resistance thermometry considerations -- 5.4.1 Thermistor measurement -- 5.4.2 Platinum resistance measurement -- 5.5 Thermometer exposure -- 5.5.1 Radiation error of air temperature sensors -- 5.5.2 Thermometer radiation screens -- 5.5.3 Radiation errors on screen temperatures -- 5.5.4 Lag times in screen temperatures -- 5.5.5 Screen condition -- 5.5.6 Modern developments in screens -- 5.6 Surface and below-surface temperature measurements -- 5.6.1 Surface temperatures -- 5.6.2 Soil temperatures -- 5.6.3 Ground heat flux density -- 6 Humidity -- 6.1 Water vapour as a gas -- 6.2 Physical measures of humidity -- 6.2.1 Absolute humidity -- 6.2.2 Specific humidity -- 6.2.3 Relative humidity -- 6.2.4 Dew point and wet bulb temperature -- 6.3 Hygrometers and their operating principles -- 6.3.1 Mechanical -- 6.3.2 Chemical -- 6.3.3 Electronic -- 6.3.4 Spectroscopic -- 6.3.5 Radio refractive index.

6.3.6 Dew point meter -- 6.3.7 Psychrometer -- 6.4 Practical psychrometers -- 6.4.1 Effect of temperature uncertainties -- 6.4.2 Ventilation effects -- 6.4.3 Freezing of the wet bulb -- 6.5 Hygrometer calibration using salt solutions -- 6.6 Comparison of hygrometry techniques -- 7 Atmospheric Pressure -- 7.1 Introduction -- 7.2 Barometers -- 7.2.1 Liquid barometers -- 7.2.2 Mercury barometers -- 7.2.3 Hypsometer -- 7.2.4 Aneroid barometers -- 7.2.5 Precision aneroid barometers -- 7.2.6 Flexible diaphragm sensors -- 7.2.7 Vibrating cylinder barometer -- 7.3 Corrections to barometers -- 7.3.1 Sea level correction -- 7.3.2 Wind speed corrections -- 8 Wind Speed and Direction -- 8.1 Introduction -- 8.2 Types of anemometer -- 8.2.1 Pressure plate anemometers -- 8.2.2 Pressure tube anemometer -- 8.2.3 Cup anemometers -- 8.2.4 Propeller anemometer -- 8.2.5 Hot sensor anemometer -- 8.2.6 Sonic anemometer -- 8.3 Wind direction -- 8.3.1 Wind vanes -- 8.3.2 Horizontal wind components -- 8.3.3 Multi-component research anemometers -- 8.4 Anemometer exposure -- 8.4.1 Anemometer deficiencies -- 8.5 Wind speed from kite tether tension -- 9 Radiation -- 9.1 Introduction -- 9.2 Solar geometry -- 9.2.1 Orbital variations -- 9.2.2 Diurnal variation -- 9.2.3 Solar time corrections -- 9.2.4 Day length calculation -- 9.2.5 Irradiance calculation -- 9.3 Shortwave radiation instruments -- 9.3.1 Thermopile pyranometer -- 9.3.2 Pyranometer theory -- 9.3.3 Silicon pyranometers -- 9.4 Pyrheliometers -- 9.5 Diffuse solar radiation measurement -- 9.5.1 Occulting disk method -- 9.5.2 Shade ring method -- 9.5.3 Reflected shortwave radiation -- 9.5.4 Fluctuations in measured radiation -- 9.6 Reference solar radiation instruments -- 9.6.1 Cavity radiometer -- 9.6.2 Secondary pyrheliometers -- 9.7 Longwave instruments -- 9.7.1 Pyrradiometer theory -- 9.7.2 Pyrradiometer calibration.

9.7.3 Pyrgeometer measurements -- 9.7.4 Commercial pyrradiometers -- 9.7.5 Radiation thermometry -- 9.8 Sunshine duration -- 9.8.1 Campbell-Stokes sunshine recorder -- 9.8.2 Electronic sensors -- 10 Clouds, Precipitation and Atmospheric Electricity -- 10.1 Introduction -- 10.2 Visual range -- 10.2.1 Point visibility meters -- 10.2.2 Transmissometers -- 10.2.3 Present weather sensors -- 10.3 Cloud base measurements -- 10.4 Rain gauges -- 10.4.1 Tilting siphon -- 10.4.2 Tipping bucket -- 10.4.3 Disdrometers -- 10.5 Atmospheric electricity -- 10.5.1 Potential Gradient instrumentation -- 10.5.2 Variability in the Potential Gradient -- 10.5.3 Lightning detection -- 11 Upper Air Instruments -- 11.1 Radiosondes -- 11.1.1 Sounding balloons -- 11.2 Radiosonde technology -- 11.2.1 Pressure sensor -- 11.2.2 Temperature and humidity sensors -- 11.2.3 Wind measurements from position information -- 11.2.4 Data telemetry -- 11.2.5 Radio transmitter -- 11.3 Uncertainties in radiosonde measurements -- 11.3.1 Response time -- 11.3.2 Radiation errors -- 11.3.3 Wet-bulbing -- 11.3.4 Location error -- 11.3.5 Telemetry errors -- 11.4 Specialist radiosondes -- 11.4.1 Cloud electrification -- 11.4.2 Ozone -- 11.4.3 Radioactivity and cosmic rays -- 11.4.4 Radiation -- 11.4.5 Turbulence -- 11.4.6 Supercooled liquid water -- 11.4.7 Atmospheric aerosol -- 11.5 Aircraft measurements -- 11.5.1 Air temperature -- 11.5.2 Wind -- 11.5.3 Pressure -- 11.5.4 Altitude -- 11.6 Small robotic aircraft -- 12 Further Methods for Environmental Data Analysis -- 12.1 Physical models -- 12.1.1 Surface energy balance -- 12.1.2 Turbulent quantities and eddy covariance -- 12.1.3 Soil temperature model -- 12.1.4 Vertical wind profile -- 12.2 Solar radiation models -- 12.2.1 Langleys solar radiation method -- 12.2.2 Surface solar radiation: Hollands model -- 12.3 Statistical models.

12.3.1 Histograms and distributions -- 12.3.2 Statistical tests -- 12.3.3 Wind gusts -- 12.4 Ensemble averaging -- 12.4.1 Solar radiation variation -- 12.4.2 Pressure tides -- 12.4.3 Carnegie curve -- 12.5 Spectral methods -- 12.5.1 Power spectra -- 12.5.2 Micrometeorological power spectra -- 12.6 Conclusion -- Appendix A Writing a Brief Instrumentation Paper -- A.1 Scope of an instrument paper -- A.2 Structure of an instrument paper -- A.2.1 Paper title -- A.2.2 Abstract -- A.2.3 Keywords -- A.2.4 Motivation -- A.2.5 Description -- A.2.6 Comparison -- A.2.7 Figures -- A.2.8 Summary -- A.2.9 Acknowledgements -- A.3 Submission and revisions -- Appendix B Anemometer Coordinate Rotations -- References -- Index -- EULA.
Abstract:
This book describes the fundamental scientific principles underlying high quality instrumentation used for environmental measurements. It discusses a wide range of in situ sensors employed in practical environmental monitoring and, in particular, those used in surface based measurement systems. It also considers the use of weather balloons to provide a wealth of upper atmosphere data. To illustrate the technologies in use it includes many examples of real atmospheric measurements in typical and unusual circumstances, with a discussion of the electronic signal conditioning,  data acquisition considerations and data processing principles necessary for reliable measurements. This also allows the long history of atmospheric measurements to be placed in the context of the requirements of modern climate science, by building the physical science appreciation of the instrumental record and looking forward to new and emerging sensor and recording technologies.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: