
Synthesis Techniques for Polymer Nanocomposites.
Title:
Synthesis Techniques for Polymer Nanocomposites.
Author:
Mittal, Vikas.
ISBN:
9783527670321
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (371 pages)
Series:
Polymer Nano-, Micro- and Macrocomposites Ser.
Contents:
Cover -- Contents -- Preface -- List of Contributors -- Chapter 1 Synthesis of Polymer Nanocomposites: Review of Various Techniques -- 1.1 Introduction -- 1.2 Synthesis Methods -- 1.2.1 Melt Intercalation -- 1.2.2 Exfoliation Adsorption -- 1.2.2.1 Solution Intercalation -- 1.2.2.2 Emulsion Polymerization -- 1.2.3 In Situ Polymerization -- 1.2.4 Nontraditional Methods -- References -- Chapter 2 Masterbatch Approach to Generate HDPE/CPE/Graphene Nanocomposites -- 2.1 Introduction -- 2.2 Experimental -- 2.2.1 Materials -- 2.2.2 Preparation of Graphite Oxide and Graphene Oxide -- 2.2.3 Nanocomposite Generation -- 2.2.4 Material Characterization -- 2.3 Results and Discussion -- 2.4 Conclusions -- Acknowledgments -- References -- Chapter 3 Preparation and Applications of Hydroxyapatite Nanocomposites Based on Biodegradable and Natural Polymers -- 3.1 Introduction -- 3.2 Preparation of HAp Nanocrystals -- 3.3 Preparation of HAp Nanocomposites -- 3.4 Applications of HAp/DNA Nanocomplexes as Gene Carriers -- 3.5 Tissue Engineering Applications of HAp Nanocomposites Based on Biodegradable Polymers -- 3.6 Applications of HAp Nanocomposites Based on Biodegradable Polymers as Drug Delivery Systems -- 3.7 Miscellaneous Applications of HAp Nanocomposites Based on Biodegradable Polymers -- 3.8 Concluding Remarks -- Acknowledgments -- References -- Chapter 4 Synthetic Methods for Nanocomposites Based on Polyester Resins -- 4.1 Introduction -- 4.2 Nanocomposites with Zero-Dimensional Nanofillers -- 4.2.1 Silicon-Containing Nanospheres -- 4.2.2 Metal Oxides -- 4.2.3 Other 0-D Nanoparticles -- 4.3 Nanocomposites with One-Dimensional Nanofillers -- 4.3.1 Carbon Nanotubes and Nanofibers -- 4.3.2 Cellulose Nanofibers -- 4.3.3 Other 1-D Nanofillers -- 4.4 Nanocomposites with Two-Dimensional Nanofillers.
4.4.1 Layered Aluminosilicate Clays -- 4.4.1.1 Mixing Methods -- 4.4.1.2 Effects of the Clay Modification -- 4.4.1.3 Nanocomposites with MMT Introduced during the Synthesis of Pre-polymer -- 4.4.1.4 Various Properties and Multiphase Nanocomposites -- 4.4.1.5 Vinyl Ester-Clay Nanocomposites -- 4.4.2 Layered Double Hydroxides -- 4.4.3 Graphene-Based Nanofillers -- 4.5 Conclusions -- Abbreviations -- References -- Chapter 5 Synthesis Fabrication and Characterization of Ag/CNT-Polymer Nanocomposites -- 5.1 Introduction -- 5.2 Experimental Procedure -- 5.3 Results and Discussion -- 5.3.1 XRD analysis -- 5.3.2 Transmission Electron Microscopy -- 5.3.3 TGA Analysis of Nanoparticles -- 5.3.4 Thermal Response of the Polymer Composites -- 5.3.5 Compression Test Results of Polymer Composites -- 5.3.6 Flexure Test Results of Polymer Composites -- 5.4 Conclusion -- Acknowledgments -- References -- Chapter 6 Preparation and Characterization of PVDF-Based Nanocomposites -- 6.1 Synthesis of Poly(vinylidene fluoride) (PVDF) -- 6.2 Structure and Piezoelectric Properties of PVDF -- 6.2.1 Relationships and Equations -- 6.2.1.1 The Piezoelectric Charge Constant and Piezoelectric Voltage Constant -- 6.3 Processing of PVDF for Energy Harvesting Applications -- 6.4 Processing of PVDF Based Materials: Polymer/Polymer, Polymer/Nanofiller, Polymer/Ionomer Blends -- 6.5 PVDF Based Nanocomposites for Energy Harvesting Applications -- 6.6 Conclusion -- References -- Chapter 7 In Situ Thermal, Photon, and Electron-Beam Synthesis of Polymer Nanocomposites -- 7.1 Introduction -- 7.2 Thermal-Assisted In Situ Synthesis: Material Choice and Nanocomposite Characterization -- 7.2.1 Precursor Molecules -- 7.2.1.1 Metal Salts -- 7.2.1.2 Organometallic Compounds -- 7.2.2 Thermal Synthesis and Composites Characterization.
7.2.2.1 Microstructural Characterization -- 7.2.2.2 Optical Spectroscopy Experiments -- 7.3 Fabrication of Nanocomposites and Patterning -- 7.3.1 Nanocomposites by Photoirradiation -- 7.3.1.1 UV and Visible Irradiation -- 7.3.1.2 Multiphoton Irradiation -- 7.3.2 Nanocomposites by Electron-Beam Writing -- 7.3.3 Nanocomposite Polymer Fibers -- 7.3.3.1 Photo-Assisted Synthesis -- 7.3.3.2 Thermal-Assisted Synthesis -- 7.4 Conclusions -- Acknowledgments -- References -- Chapter 8 Synthesis of Polymer Nanocomposites by Water-Assisted Extrusion -- 8.1 Introduction -- 8.2 Nanocomposites Structure and Characterization -- 8.2.1 Clays -- 8.2.2 Organomodification of Layered Silicates -- 8.2.3 Nanocomposites Structure and Characterization -- 8.3 Nanocomposites Preparation -- 8.3.1 Intercalation from Solution -- 8.3.2 In Situ Polymerization -- 8.3.3 Melt Compounding -- 8.3.3.1 Melt Blending of Polymer/Organoclay Nanocomposites -- 8.3.3.2 Melt Blending of Polymer/Pristine Clay Nanocomposites -- 8.4 Nanocomposite Properties -- 8.4.1 Thermal Stability -- 8.4.2 Flame Retardancy -- 8.5 Toward Fully Green Composites? -- References -- Chapter 9 In Situ Preparation of Conducting Polymer Nanocomposites -- 9.1 Introduction -- 9.1.1 Electrically Conductive Polymer Nanocomposites and Their Applications -- 9.1.2 Percolation Theory -- 9.1.3 Factors Affecting the Electrical Conductivity of Nanocomposites -- 9.1.3.1 Physical Properties of the Fillers -- 9.1.3.2 Filler Distribution and Dispersion -- 9.1.3.3 Physical Properties of Polymer Matrices -- 9.1.3.4 Filler Orientation and Alignment -- 9.1.3.5 Nanocomposite Fabrication Methods and Conditions -- 9.2 In Situ Preparation of Conductive Nanocomposites -- 9.2.1 In Situ Polymerization Strategy -- 9.2.1.1 Step Growth -- 9.2.1.2 Chain Growth.
9.2.1.3 Aligning Conductive Fillers in in situ Polymerization Processes -- 9.2.2 In Situ Formation of Conducting Polymer Nanocomposites -- 9.2.2.1 In Situ Formation of rGO-Based Polymer Nanocomposites -- 9.2.2.2 In Situ Formation of Metallic Conductive Pathways -- 9.3 Challenges and Outlook -- References -- Chapter 10 Near IR Spectroscopy for the Characterization of Dispersion in Polymer-Clay Nanocomposites -- 10.1 Introduction -- 10.2 Morphology and Properties -- 10.3 Preparation Methods -- 10.4 Characterization Techniques -- 10.5 Dispersion by Melt Mixing -- 10.6 Online and Inline Monitoring of Dispersion -- 10.7 Conclusions -- References -- Chapter 11 Synthesis of Polymer Nanocomposites in Supercritical CO2 -- 11.1 Introduction -- 11.2 Background on Supercritical CO2 -- 11.3 Physical and Chemical Properties of scCO2 -- 11.4 Preparation of Polymer/Inorganic Filler Nanocomposites in Supercritical CO2 -- 11.4.1 Ex Situ Method -- 11.4.1.1 Solution Blending -- 11.4.1.2 Melt Blending -- 11.4.2 In Situ Method -- 11.4.2.1 Synthesis of Nanocomposites by Dispersion Polymerization -- 11.4.2.2 Synthesis of Nanocomposites by Other Techniques -- 11.5 Conclusions -- References -- Index -- EULA.
Abstract:
The book series 'Polymer Nano-, Micro- and Macrocomposites' provides complete and comprehensive information on all important aspects of polymer composite research and development, including, but not limited to synthesis, filler modification, modeling, characterization as well as application and commercialization issues. Each book focuses on a particular topic and gives a balanced in-depth overview of the respective subfield of polymer composite science and its relation to industrial applications. With the books the readers obtain dedicated resources with information relevant to their research, thereby helping to save time and money. Summarizing all the most important synthesis techniques used in the lab as well as in industry, this book is comprehensive in its coverage from chemical, physical and mechanical viewpoints. This book helps readers to choose the correct synthesis route, such as suspension and miniemulsion polymerization, living polymerization, sonication, mechanical methods or the use of radiation, and so achieve the desired composite properties.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View