Cover image for Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing.
Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing.
Title:
Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing.
Author:
Giovannelli , Jean-François.
ISBN:
9781118827079
Edition:
1st ed.
Physical Description:
1 online resource (323 pages)
Contents:
Cover -- Title Page -- Copyright -- Contents -- Introduction -- I.1. Bibliography -- 1: 3D Reconstruction in X-ray Tomography: Approach Example for Clinical Data Processing -- 1.1. Introduction -- 1.2. Problem statement -- 1.2.1. Data formation models -- 1.2.2. Estimators -- 1.2.3. Algorithms -- 1.3. Method -- 1.3.1. Data formation models -- 1.3.2. Estimator -- 1.3.3. Minimization method -- 1.3.3.1. Algorithm selection -- 1.3.3.2. Minimization procedure -- 1.3.4. Implementation of the reconstruction procedure -- 1.4. Results -- 1.4.1. Comparison of minimization algorithms -- 1.4.2. Using a region of interest in reconstruction -- 1.4.3. Consideration of the polyenergetic character of the X-ray source -- 1.4.3.1. Simulated data in 2D -- 1.4.3.2. Real data in 3D -- 1.5. Conclusion -- 1.6. Acknowledgments -- 1.7. Bibliography -- 2: Analysis of Force-Volume Images in Atomic Force Microscopy Using Sparse Approximation -- 2.1. Introduction -- 2.2. Atomic force microscopy -- 2.2.1. Biological cell characterization -- 2.2.2. AFM modalities -- 2.2.2.1. Isoforce and isodistance images -- 2.2.2.2. Force spectroscopy -- 2.2.2.3. Force-volume imaging -- 2.2.3. Physical piecewise models -- 2.2.3.1. Approach phase models -- 2.2.3.2. Retraction phase models -- 2.3. Data processing in AFM spectroscopy -- 2.3.1. Objectives and methodology in signal processing -- 2.3.1.1. Detection of the regions of interest -- 2.3.1.2. Parametric model fitting -- 2.3.2. Segmentation of a force curve by sparse approximation -- 2.3.2.1. Detecting jumps in a signal -- 2.3.2.2. Joint detection of discontinuities at different orders -- 2.3.2.3. Scalar and vector variable selection -- 2.4. Sparse approximation algorithms -- 2.4.1. Minimization of a mixed l2-l0 criterion -- 2.4.2. Dedicated algorithms -- 2.4.3. Joint detection of discontinuities -- 2.4.3.1. Construction of the dictionary.

2.4.3.2. Selection of scalar variables -- 2.4.3.3. Selection of vector variables -- 2.5. Real data processing -- 2.5.1. Segmentation of a retraction curve: comparison of strategies -- 2.5.2. Retraction curve processing -- 2.5.3. Force-volume image processing in the approach phase -- 2.6. Conclusion -- 2.7. Bibliography -- 3: Polarimetric Image Restoration by Non-local Means -- 3.1. Introduction -- 3.2. Light polarization and the Stokes-Mueller formalism -- 3.3. Estimation of the Stokes vectors -- 3.3.1. Estimation of the Stokes vector in a pixel -- 3.3.1.1. Problem formulation -- 3.3.1.2. Properties of the constrained optimization problem -- 3.3.1.3. Optimization algorithm -- 3.3.2. Non-local means filtering -- 3.3.3. Adaptive non-local means filtering -- 3.3.3.1. The function φ -- 3.3.3.2. Patches size and shape -- 3.3.4. Application to the estimation of Stokes vectors -- 3.4. Results -- 3.4.1. Results with synthetic data -- 3.4.1.1. Synthetic data and context evaluation presentation -- 3.4.1.2. Results -- 3.4.1.3. Significance of the proposed method for the estimation of the weights -- 3.4.2. Results with real data -- 3.5. Conclusion -- 3.6. Bibliography -- 4: Video Processing and Regularized Inversion Methods -- 4.1. Introduction -- 4.2. Three applications -- 4.2.1. PIV and estimation of optical flow -- 4.2.2. Multiview stereovision -- 4.2.3. Superresolution and non-translational motion -- 4.3. Dense image registration -- 4.3.1. Direct formulation -- 4.3.2. Variational formulation -- 4.3.3. Extension of direct formulation for multiview processing -- 4.4. A few achievements based on direct formulation -- 4.4.1. Dense optical flow by correlation of local window -- 4.4.1.1. Lucas-Kanade exact approach -- 4.4.1.2. IWS scheme -- 4.4.1.3. FOLKI algorithm -- 4.4.2. Occlusion management in multiview stereovision.

4.4.2.1. A regularized approach of the elevation estimation -- 4.4.2.2. Occlusion management by typical visibility -- 4.4.3. Direct models for SR -- 4.4.3.1. A calculation in object geometry -- 4.4.3.2. A calculation in sensor geometry -- 4.4.3.3. Shift-and-add model -- 4.5. Conclusion -- 4.6. Bibliography -- 5: Bayesian Approach in Performance Modeling: Application to Superresolution -- 5.1. Introduction -- 5.1.1. The hiatus between performance modeling and Bayesian inversion -- 5.1.2. Chapter organization -- 5.2. Performance modeling and Bayesian paradigm -- 5.2.1. An empirical performance evaluation tool -- 5.2.2. Usefulness and limits of a performance evaluation tool -- 5.2.3. Bayesian formalism -- 5.3. Superresolution techniques behavior -- 5.3.1. Superresolution -- 5.3.2. SR methods performance: known facts -- 5.3.2.1. Condition number of forward model and regularization -- 5.3.2.2. Influential parameters -- 5.3.2.3. Registration error -- 5.3.3. An SR experiment -- 5.3.4. Performance model and properties -- 5.3.4.1. Data and processing models -- 5.3.4.2. Input models -- 5.3.4.3. Performance measure -- 5.3.4.4. Discussion -- 5.4. Application examples -- 5.4.1. Behavior of the optimal filter with regard to the number of images -- 5.4.2. Characterization of an approximation: shifts rounding -- 5.5. Real data processing -- 5.5.1. A concrete measure to improve the resolution: the RER -- 5.5.2. Empirical validation and application field -- 5.6. Conclusion -- 5.7. Bibliography -- 6: Line Spectra Estimation for Irregularly Sampled Signals in Astrophysics -- 6.1. Introduction -- 6.2. Periodogram, irregular sampling and maximum likelihood -- 6.3. Line spectra models: spectral sparsity -- 6.3.1. An inverse problem with sparsity prior information -- 6.3.2. Difficulties in terms of sparse approximation -- 6.4. Prewhitening, CLEAN and greedy approaches.

6.4.1. Standard greedy algorithms -- 6.4.1.1. Matching pursuit -- 6.4.1.2. Orthogonal matching pursuit -- 6.4.1.3. Orthogonal least squares -- 6.4.2. A more complete iterative method: single best replacement -- 6.4.3. CLEAN-based methods -- 6.5. Global approach and convex penalization -- 6.5.1. Significance of l1 penalization in C -- 6.5.2. Existence and uniqueness -- 6.5.3. Minimizer and regularization parameter analytical characterization -- 6.5.4. Amplitude bias and a posteriori corrections -- 6.5.5. Hermitian symmetry and specificity of the zero frequency -- 6.5.6. Optimization algorithms -- 6.5.7. Results -- 6.6. Probabilistic approach for sparsity -- 6.6.1. Bernoulli-Gaussian model for spectral analysis -- 6.6.2. A structure adapted to the use of MCMC methods -- 6.6.3. An extended BG model for improved accuracy -- 6.6.4. Stochastic simulation and estimation -- 6.6.5. Results -- 6.7. Conclusion -- 6.8. Bibliography -- 7: Joint Detection-Estimation in Functional MRI -- 7.1. Introduction to functional neuroimaging -- 7.2. Joint detection-estimation of brain activity -- 7.2.1. Detection and estimation: two interdependent issues -- 7.2.2. Hemodynamics physiological hypotheses -- 7.2.3. Spatially variable convolutive model -- 7.2.4. Regional generative model -- 7.3. Bayesian approach -- 7.3.1. Likelihood -- 7.3.2. A priori distributions -- 7.3.2.1. Hemodynamic response function (HRF) -- 7.3.2.2. Neural response levels (NRL) -- 7.3.2.3. Mixture hyperparameters -- 7.3.2.4. Noise and derivatives -- 7.3.3. A posteriori distribution -- 7.4. Scheme for stochastic MCMC inference -- 7.4.1. HRF and NRLs simulation -- 7.4.2. Unsupervised spatial and spatially adaptive regularization -- 7.5. Alternative variational inference scheme -- 7.5.1. Motivations and foundations -- 7.5.2. Variational EM algorithm -- 7.6. Comparison of both types of solutions.

7.6.1. Experiments on simulated data -- 7.6.2. Experiments on real data -- 7.7. Conclusion -- 7.8. Bibliography -- 8: MCMC and Variational Approaches for Bayesian Inversion in Diffraction Imaging -- 8.1. Introduction -- 8.2. Measurement configuration -- 8.2.1. The microwave device -- 8.2.2. The optical device -- 8.3. The forward model -- 8.3.1. The microwave case -- 8.3.2. The optical case -- 8.3.3. The discrete model -- 8.3.3.1. The observation matrix -- 8.3.3.2. The coupling matrix -- 8.3.4. Validation of the forward model -- 8.4. Bayesian inversion approach -- 8.4.1. The MCMC sampling method -- 8.4.2. The VBA method -- 8.4.3. Initialization, progress and convergence of the algorithms -- 8.5. Results -- 8.6. Conclusions -- 8.7. Bibliography -- 9: Variational Bayesian Approach and Bi-Model for the Reconstruction-Separation of Astrophysics Components -- 9.1. Introduction -- 9.2. Variational Bayesian methodology -- 9.3. Exponentiated gradient for variational Bayesian -- 9.4. Application: reconstruction-separation of astrophysical components -- 9.4.1. Direct model -- 9.4.2. A Priori distributions -- 9.4.3. A posteriori distribution -- 9.5. Implementation of the variational Bayesian approach -- 9.5.1. Separability study -- 9.5.2. Update of the approximation distributions -- 9.5.2.1. Update of the a distribution -- 9.5.2.2. Update of the p distribution -- 9.5.2.3. Update of the s distribution -- 9.5.2.4. Update of the o distribution -- 9.6. Results -- 9.6.1. Simulated data -- 9.6.1.1. Realistic simulation -- 9.6.1.2. Study of the peaks reconstruction -- 9.6.2. Real data -- 9.7. Conclusion -- 9.8. Bibliography -- 10: Kernel Variational Approach for Target Tracking in a Wireless Sensor Network -- 10.1. Introduction -- 10.2. State of the art: limitations of existing methods -- 10.3. Model-less target tracking.

10.3.1. Construction of the likelihood by matrix regression.
Abstract:
The focus of this book is on "ill-posed inverse problems". These problems cannot be solved only on the basis of observed data. The building of solutions involves the recognition of other pieces of a priori information. These solutions are then specific to the pieces of information taken into account. Clarifying and taking these pieces of information into account is necessary for grasping the domain of validity and the field of application for the solutions built.  For too long, the interest in these problems has remained very limited in the signal-image community. However, the community has since recognized that these matters are more interesting and they have become the subject of much greater enthusiasm. From the application field's point of view, a significant part of the book is devoted to conventional subjects in the field of inversion: biological and medical imaging, astronomy, non-destructive evaluation, processing of video sequences, target tracking, sensor networks and digital communications. The variety of chapters is also clear, when we examine the acquisition modalities at stake: conventional modalities, such as tomography and NMR, visible or infrared optical imaging, or more recent modalities such as atomic force imaging and polarized light imaging.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: