Cover image for Advanced Catalytic Materials.
Advanced Catalytic Materials.
Title:
Advanced Catalytic Materials.
Author:
Tiwari, Ashutosh.
ISBN:
9781118998960
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (470 pages)
Series:
Advanced Material Series
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Nanocatalysts - Architecture and Design -- 1 Environmental Applications of Multifunctional Nanocomposite Catalytic Materials: Issues with Catalyst Combinations -- 1.1 Introduction -- 1.1.1 The Three Way Catalyst -- 1.1.2 Operation and Composition of the TWC -- 1.1.3 Process Control to Allow the TWC Operate -- 1.1.4 Changes to Catalyst Formulations Allowing Oscillating A/F Ratios -- 1.1.5 Problems with TWC Technology -- 1.2 Proposed Solutions to the Lean-Burn NOx emission Problems -- 1.2.1 NH3-SCR -- 1.2.1.1 TiO2-Supported V2O5 Catalysts -- 1.2.1.2 Ion-Exchanged Zeolites in NH3-SCR -- 1.2.1.3 SCR-Urea Reactions -- 1.2.2 NOx Trapping -- 1.3 Multifunctional Materials to Combine NH3-SCR and NSR Cycles -- 1.4 Particulate Matter, Formation, Composition and Dangers -- 1.4.1 Particulate Matter Aftertreatment Technology -- 1.4.2 Particulate Traps and Regeneration -- 1.5 Use of Multifunctional Materials to Combust C(s) and Trap NOx -- 1.6 Multifunctional Materials in Selective Catalytic Oxidation -- 1.6.1 Current Epoxidation Reactions -- 1.6.2 H2O2 as a Selective Oxidant -- 1.6.3 Current and Greener H2O2 Production -- 1.7 Proposed Tandem Catalysts for "Green" Selective Epoxidation -- 1.8 Conclusions -- Acknowledgements -- References -- 2 Chemical Transformation of Molecular Precursor into Well-Defined Nanostructural Functional Framework via Soft Chemical Approach -- 2.1 Introduction -- Aims and Objective of the Chapter -- 2.2 The Chemistry of Metal Alkoxides -- 2.3 The Chemistry of Nanomaterials -- 2.4 Preparation of Monometallic Alkoxides and Its Conversion into Corresponding Metal Oxides -- 2.5 Techniques used to Characterization of Precursor and Inorganic Material -- 2.5.1 1H NMR -- 2.5.2 FT-IR Spectroscopy -- 2.5.3 UV-Visible Spectroscopy -- 2.5.4 Raman Spectroscopy.

2.5.5 Thermal Analysis -- 2.5.6 XRD Studies -- 2.5.7 SEM-EDX -- 2.5.8 Energy Dispersive X-Ray Analysis (EDX) -- 2.5.9 TEM -- 2.5.10 STM -- 2.5.11 AFM -- 2.5.12 BET -- 2.5.13 Photoluminescence Spectroscopy -- 2.5.14 Particle size and Its Distribution along with Shape -- 2.6 Conclusion -- Acknowledgement -- References -- 3 Graphenes in Heterogeneous Catalysis -- 3.1 Introduction -- 3.1.1 Carbocatalysis -- 3.1.2 Structure and Properties of G -- 3.1.3 Defects on G and GO -- 3.1.4 Doped Gs. Properties and Interest in Catalysis -- 3.1.5 Preparation of Doped Gs -- 3.1.6 Preparation Procedures -- 3.1.7 Characterization Techniques -- 3.2 Carbocatalysis -- 3.3 G Materials as Carbocatalysts -- 3.3.1 G as Oxidation Catalyst -- 3.3.2 Reduction -- 3.3.3 G as Acid/Base Catalysts -- 3.4 G as Support of Metal NPs -- 3.4.1 G as Support of Metal NPs Used as Catalyst for Oxidation Reactions -- 3.4.2 Metal NPs Supported in G-Based Materials as Catalyst for Reduction Reactions -- 3.4.3 Metal NPs Supported in G-Based Materials as Catalyst for Coupling Reactions -- 3.4.4 Metal NPs Supported in G-Based Materials as Catalyst for Hydrogen Release -- 3.5 Summary and Future Prospects -- References -- 4 Gold Nanoparticles-Graphene Composites Material: Synthesis, Characterization and Catalytic Application -- 4.1 Introduction -- 4.2 Synthesis of Au NPs-rGO Composites and Its Characterization -- 4.2.1 In Situ Synthesis of Au NPs-rGO Composite Materials -- 4.2.1.1 Thermal Reduction -- 4.2.1.2 Chemical Reduction -- 4.2.1.3 Gas Phase Chemical Reduction -- 4.2.1.4 Electrochemical Deposition of Au NPs onto Graphene Sheets -- 4.2.1.5 Photo-Assisted Reduction -- 4.2.1.6 Ultrasonication -- 4.2.1.7 Microwave-Assisted Synthesis -- 4.2.2 Ex Situ Synthesis of Au NPs-rGO Nanocomposites -- 4.3 Catalytic Application of Au NPs-rGO Composites -- 4.4 Future Prospects -- Acknowledgements -- References.

Part II: Organic and Inorganic Catalytic Transformations -- 5 Hydrogen Generation from Chemical Hydrides -- 5.1 Introduction: Overview of Hydrogen -- 5.2 Hydrogen Generation -- 5.2.1 Measurement Techniques -- 5.2.2 Reactions -- 5.2.3 Rate Calculations and Yields -- 5.3 Type of Catalysts and Catalyst Morphologies -- 5.3.1 Powder Catalysts -- 5.3.1.1 Monometallic Ni(0) -- 5.3.1.2 Monometallic Co-P -- 5.3.1.3 Monometallic CoO -- 5.3.1.4 Monometallic Cu -- 5.3.1.5 Bimetallic Pt-Ru -- 5.3.1.6 Bimetallic Co-Co2B and Ni-Ni3B -- 5.3.1.7 Bimetallic PtxNi1-x -- 5.3.1.8 Ternary Pd-Ni-B Nanoclusters -- 5.3.1.9 Quaternary Co-La-Zr-B -- 5.3.1.10 Quaternary Co-Mo-Pd-B -- 5.3.2 Supported Catalysts -- 5.3.2.1 Cobalt (Co) on Mesoporous Silica -- 5.3.2.2 Cobalt (Co) on Carbon -- 5.3.2.3 Cobalt (Co) on Oxides (TiO2, Al2O3, CeO2) -- 5.3.2.4 Cobalt (Co) on Polymers -- 5.3.2.5 Co(II)-Cu(II) On Polymer -- 5.3.2.6 Ni on Polymers -- 5.3.2.7 Co-Ni-P on Pd-Activated TiO2 -- 5.3.2.8 Ni3B on Carbon -- 5.3.2.9 Ni-Ru Nanocomposite -- 5.3.2.10 Pt on Carbon -- 5.3.2.11 Pt on TiO2 -- 5.3.2.12 Ru on Carbon -- 5.3.2.13 Ru on Al2O3, TiO2, CeO2, Activated Carbon -- 5.3.2.14 Noble Metal Nanoclusters (Ru, Rh, Pd, Pt, Au) on Alumina, Carbon and Silica -- 5.3.2.15 PtPdRu on CNTs (Carbon Nanotubes) -- 5.3.3 Foam and Film Supports -- 5.3.3.1 Fe-Co-B on Ni Foam -- 5.3.3.2 Co-B on Ni Foam -- 5.3.3.3 Ni-B on Ni Foam -- 5.3.3.4 Mg, Al on Ni Foam -- 5.3.3.5 FeB on Ni Foam -- 5.3.3.6 Co-Ni-P on Cu Sheet -- 5.3.3.7 Co-W-P on Cu Plate -- 5.3.3.8 Fe-B on Carbon Cloth -- 5.3.3.9 Cu Film on Cu Foil -- 5.3.3.10 Co-B Film -- 5.3.3.11 Dealloyed Precious Metals on Teflon™ or Asymmetric Membranes -- 5.4 Kinetics and Models -- 5.4.1 Zero-Order Kinetic Model -- 5.4.2 First-Order Kinetic Model -- 5.4.3 Langmuir-Hinshelwood Model -- 5.5 Hydrogen Generation for PEMFCs -- 5.5.1 Proton-Exchange Membrane Fuel Cells.

5.6 Conclusions -- Acknowledgements -- References -- 6 Ring-Opening Polymerization of Lactide -- Abbreviation -- 6.1 Introduction -- 6.2 Aluminum Metal -- 6.3 Importance of Polylactic Acid -- 6.4 Ring-Opening Polymerization (ROP) -- 6.5 Application of Different Catalytic System in ROP of Lactide -- 6.5.1 Alkyl Aluminum Catalyst -- 6.5.2 Alkoxy Aluminum Catalyst -- 6.5.3 Bimetallic Aluminum Catalyst -- 6.6 Concluding Remarks -- Acknowledgments -- References -- 7 Catalytic Performance of Metal Alkoxides -- 7.1 Introduction -- 7.2 Metal Alkoxides -- 7.3 Polymerization Reactions Catalyzed by Metal Alkoxides -- 7.3.1 Ring Opening Polymerization of Olefin Oxides -- 7.3.2 Ring Opening Polymerization of Cyclic Esters -- 7.3.2.1 Lactide -- 7.3.2.2 Ɛ-Caprolactone -- 7.3.2.3 ß-Butyrolactone -- 7.3.2.4 Other Miscellaneous Polymerization Reactions -- 7.4 Reduction Reactions Catalyzed by Metal Alkoxides -- 7.4.1 Hydrogenation -- 7.4.2 Meerwein-Ponndorf-Verley Reaction -- 7.4.3 Reduction Reaction with Borane -- 7.5 Oxidation Reactions Catalyzed by Metal Alkoxides -- 7.5.1 Oxidation of Sulfides -- 7.5.2 Oxidation of Olefins -- 7.6 Other Miscellaneous Metal Alkoxide Catalysis Reactions -- 7.6.1 Reactions Catalyzed by s-Block Metal Alkoxides -- 7.6.2 Reactions Catalyzed by p-Block Metal Alkoxides -- 7.6.3 Reactions Catalyzed by d-Block Metal Alkoxides -- 7.6.4 Reactions Catalyzed by f-Block Metal Alkoxides -- 7.7 Conclusion -- Acknowledgment -- References -- 8 Cycloaddition of CO2 and Epoxides over Reusable Solid Catalysts -- 8.1 Introduction: CO2 as Raw Material -- 8.2 Properties and Applications of Cyclic Carbonates -- 8.3 Synthesis of Cyclic Carbonates from the Cycloaddition Reaction of CO2 with Epoxides -- 8.3.1 Inorganic Materials -- 8.3.1.1 Hydrotalcites as Precursors of Mixed Oxides -- 8.3.1.2 Pure and Mixed Metal Oxides.

8.3.1.3 Layered Clay Mineral (Hydroxyapatites and Smectites) -- 8.3.1.4 Zeolite and Molecular Sieves Materials -- 8.3.2 Organic Materials -- 8.3.2.1 Functionalized Chitosan (CS) -- 8.3.2.2 Functionalized Cross-linked Polymers and Resins -- 8.3.3 Organic-Inorganic Hybrid Composites -- 8.3.3.1 Functionalized Silica-Based Catalysts -- 8.3.3.2 Functionalized Mesoporous Ordered Materials -- 8.3.3.3 Supported Organometallic Complexes Catalysts -- 8.3.3.4 Metal Organic Frameworks (MOFs) -- 8.3.3.5 Polyoxometalate-Based Materials -- 8.4 Concluding Remarks and Future Perspectives -- References -- Part III: Functional Catalysis: Fundamentals and Applications -- 9 Catalytic Metal-/Bio-composites for Fine Chemicals Derived from Biomass Production -- 9.1 Introduction -- 9.2 Metal Composites with Catalytic Activity in Biomass Conversion -- 9.2.1 Ru-Based Materials as Efficient Catalysts for the Cellulose Valorization -- 9.2.2 Key Catalytic Features: Platform Molecules Nature Relationship -- 9.3 Catalytic Biocomposites with Heterogeneous Design -- 9.3.1 Enzyme Composites in Catalytic Conversion of Biomass -- 9.3.2 Immobilized Enzymes on Magnetic Particles (IEMP) -- 9.3.3 Carrier-Free Immobilized Enzymes -- 9.3.4 Enzyme and Neoteric Solvent Mixture -- 9.3.5 New Immobilized Enzyme Architectures -- 9.3.6 Biocomposites Using Whole Cell -- 9.4 Conclusions -- References -- 10 Homoleptic Metal Carbonyls in Organic Transformation -- 10.1 Introduction -- 10.2 Cycloaddition -- 10.2.1 [2+2+1] Cycloaddition -- 10.2.2 Regioselective [2+2+2] Cycloaddition -- 10.3 Carbonylation -- 10.3.1 Carbonylation of Unactivated C(sp3)-H Bonds -- 10.3.2 Oxidative Carbonylation of Arylamines -- 10.3.3 Thiolative Lactonization of Alkynes with Double CO Incorporation -- 10.3.4 Synthesis of Succinimides with Double Carbonylation -- 10.4 Silylation -- 10.4.1 Hydrosilylation of Conjugated Dienes.

10.5 Amidation of Adamantane and Diamantane.
Abstract:
The subject of advanced materials in catalysisbrings together recent advancements in materials synthesis and technologies to the design of novel and smart catalysts used in the field of catalysis. Nanomaterials in general show an important role in chemical processing as adsorbents, catalysts, catalyst supports and membranes, and form the basis of cutting-edge technology because of their unique structural and surface properties. Advanced Catalytic Materials is written by a distinguished group of contributors and the chapters provide comprehensive coverage of the current literature, up-to-date overviews of all aspects of advanced materials in catalysis, and present the skills needed for designing and synthesizing advanced materials. The book also showcases many topics concerning the fast-developing area of materials for catalysis and their emerging applications.     The book is divided into three parts:  Nanocatalysts - Architecture and Design; Organic and Inorganic Catalytic Transformations; and Functional Catalysis: Fundamentals and Applications. Specifically, the chapters discuss the following subjects:              Environmental applications of multifunctional nanocomposite catalytic materials              Transformation of nanostructured functional precursors using soft chemistry              Graphenes in heterogeneous catalysis              Gold nanoparticles-graphene composites material for catalytic application              Hydrogen generation from chemical hydrides              Ring-opening polymerization of poly(lactic acid)              Catalytic performance of metal alkoxides              Cycloaddition of CO2 and epoxides over reusable solid catalysts              Biomass derived fine chemicals using catalytic metal bio-composites              Homoleptic metal carbonyls in organic transformation

Zeolites: smart materials for novel, efficient, and versatile catalysis              Optimizing zeolitic catalysis for environmental remediation.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Added Author:
Electronic Access:
Click to View
Holds: Copies: