Cover image for Performance Evaluation by Simulation and Analysis with Applications to Computer Networks.
Performance Evaluation by Simulation and Analysis with Applications to Computer Networks.
Title:
Performance Evaluation by Simulation and Analysis with Applications to Computer Networks.
Author:
Chen, Ken.
ISBN:
9781119006213
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (316 pages)
Contents:
Cover -- Title Page -- Copyright -- Contents -- List of Tables -- List of Figures -- List of Listings -- Preface -- 1: Performance Evaluation -- 1.1. Performance evaluation -- 1.2. Performance versus resources provisioning -- 1.2.1. Performance indicators -- 1.2.2. Resources provisioning -- 1.3. Methods of performance evaluation -- 1.3.1. Direct study -- 1.3.2. Modeling -- 1.4. Modeling -- 1.4.1. Shortcomings -- 1.4.2. Advantages -- 1.4.3. Cost of modeling -- 1.5. Types of modeling -- 1.6. Analytical modeling versus simulation -- PART 1: Simulation -- 2: Introduction to Simulation -- 2.1. Presentation -- 2.2. Principle of discrete event simulation -- 2.2.1. Evolution of a event-driven system -- 2.2.2. Model programming -- 2.2.2.1. Scheduler -- 2.2.2.2. Object-oriented programming -- 2.3. Relationship with mathematical modeling -- 3: Modeling of Stochastic Behaviors -- 3.1. Introduction -- 3.2. Identification of stochastic behavior -- 3.3. Generation of random variables -- 3.4. Generation of U(0, 1) r.v. -- 3.4.1. Importance of U(0, 1) r.v. -- 3.4.2. Von Neumann's generator -- 3.4.3. The LCG generators -- 3.4.3.1. Presentation -- 3.4.3.2. Properties -- 3.4.3.2.1. MLCG with M = 2k -- 3.4.3.2.2. MLCG with M primer number -- 3.4.3.3. Examples of LCG -- 3.4.4. Advanced generators -- 3.4.4.1. Principle -- 3.4.4.2. Mersenne Twister generator -- 3.4.4.3. L'Ecuyer's generator -- 3.4.5. Precaution and practice -- 3.4.5.1. Nature of the PRNG -- 3.4.5.2. Choice of seed -- 3.4.5.3. Multiples substreams of RNG -- 3.4.5.3.1. Principle -- 3.4.5.3.2. Example of OMNeT++ -- 3.4.5.4. Quality of the PRNG -- 3.5. Generation of a given distribution -- 3.5.1. Inverse transformation method -- 3.5.2. Acceptance-rejection method -- 3.5.2.1. Case of finite support -- 3.5.2.2. Generalized version -- 3.5.3. Generation of discrete r.v.

3.5.3.1. Case of the finite discrete r.v. -- 3.5.3.2. Case of countably infinite discrete r.v. -- 3.5.4. Particular case -- 3.5.4.1. Composition -- 3.5.4.2. Convolution -- 3.6. Some commonly used distributions and their generation -- 3.6.1. Uniform distribution -- 3.6.1.1. Utilization -- 3.6.1.2. Parameters -- 3.6.1.3. Generation -- 3.6.2. Triangular distribution -- 3.6.2.1. Utilization -- 3.6.2.2. Parameters -- 3.6.2.3. Generation -- 3.6.3. Exponential distribution -- 3.6.3.1. Utilization -- 3.6.3.1.1. Arrival process -- 3.6.3.1.2. Memoryless phenomena -- 3.6.3.2. Parameter -- 3.6.3.3. Generation -- 3.6.4. Pareto distribution -- 3.6.4.1. Utilization -- 3.6.4.2. Parameters -- 3.6.4.3. Generation -- 3.6.5. Normal distribution -- 3.6.5.1. Utilization -- 3.6.5.2. Parameters -- 3.6.5.3. Generation -- 3.6.6. Log-normal distribution -- 3.6.6.1. Utilization -- 3.6.6.2. Parameters -- 3.6.6.3. Generation -- 3.6.7. Bernoulli distribution -- 3.6.7.1. Utilization -- 3.6.7.2. Parameter -- 3.6.7.3. Generation -- 3.6.8. Binomial distribution -- 3.6.8.1. Utilization -- 3.6.8.2. Parameters -- 3.6.8.3. Generation -- 3.6.9. Geometric distribution -- 3.6.9.1. Utilization -- 3.6.9.2. Parameter -- 3.6.9.3. Generation -- 3.6.10. Poisson distribution -- 3.6.10.1. Utilization -- 3.6.10.2. Parameter -- 3.6.10.3. Generation -- 3.7. Applications to computer networks -- 4: Simulation Languages -- 4.1. Simulation languages -- 4.1.1. Presentation -- 4.1.2. Main programming features -- 4.1.3. Choice of a simulation language -- 4.2. Scheduler -- 4.3. Generators of random variables -- 4.4. Data collection and statistics -- 4.5. Object-oriented programming -- 4.6. Description language and control language -- 4.7. Validation -- 4.7.1. Generality -- 4.7.2. Verification of predictions -- 4.7.3. Some specific and typical errors -- 4.7.4. Various tests.

4.7.4.1. Parameter setting and continuity -- 4.7.4.2. Robustness -- 5: Simulation Running and Data Analysis -- 5.1. Introduction -- 5.2. Outputs of a simulation -- 5.2.1. Nature of the data produced by a simulation -- 5.2.2. Stationarity -- 5.2.3. Example -- 5.2.4. Transient period -- 5.2.5. Duration of a simulation -- 5.3. Mean value estimation -- 5.3.1. Mean value of discrete variables -- 5.3.2. Mean value of continuous variables -- 5.3.3. Estimation of a proportion -- 5.3.4. Confidence interval -- 5.4. Running simulations -- 5.4.1. Replication method -- 5.4.2. Batch-means method -- 5.4.3. Regenerative method -- 5.5. Variance reduction -- 5.5.1. Common random numbers -- 5.5.2. Antithetic variates -- 5.6. Conclusion -- 6: OMNeT++ -- 6.1. A summary presentation -- 6.2. Installation -- 6.2.1. Preparation -- 6.2.2. Installation -- 6.3. Architecture of OMNeT++ -- 6.3.1. Simple module -- 6.3.2. Channel -- 6.3.3. Compound module -- 6.3.4. Simulation model (network) -- 6.4. The NED langage -- 6.5. The IDE of OMNeT++ -- 6.6. The project -- 6.6.1. Workspace and projects -- 6.6.2. Creation of a project -- 6.6.3. Opening and closing of a project -- 6.6.4. Import of a project -- 6.7. A first example -- 6.7.1. Creation of the modules -- 6.7.1.1. The module MySource -- 6.7.1.1.1. Description -- 6.7.1.1.2. Implementation -- 6.7.1.2. The module MySink -- 6.7.1.3. The simulation model -- 6.7.2. Compilation -- 6.7.3. Initialization -- 6.7.4. Launching of the simulation -- 6.8. Data collection and statistics -- 6.8.1. The Signal mechanism -- 6.8.2. The collectors -- 6.8.3. Extension of the model with statistics -- 6.8.3.1. Put probes in MySink.cc -- 6.8.3.2. Configuration through MySink.ned -- 6.8.4. Data analysis -- 6.9. A FIFO queue -- 6.9.1. Construction of the queue -- 6.9.1.1. Description -- 6.9.1.2. Insertion of a message -- 6.9.1.3. Service.

6.9.1.4. Sending of a message -- 6.9.1.5. Statistics -- 6.9.1.6. The FIFO queue model -- 6.9.2. Extension of MySource -- 6.9.3. Configuration -- 6.10. An elementary distributed system -- 6.10.1. Presentation -- 6.10.2. Coding -- 6.10.2.1. Namespace -- 6.10.2.2. Specific message format -- 6.10.2.3. Coding of the TRNode module -- 6.10.3. Modular construction of a larger system -- 6.10.4. The system -- 6.10.5. Configuration of the simulation and its scenarios -- 6.11. Building large systems: an example with INET -- 6.11.1. The system -- 6.11.2. Ethernet card with LLC -- 6.11.3. The new entity MyApp -- 6.11.3.1. Description of MyApp -- 6.11.3.2. Implementation of MyApp -- 6.11.4. Simulation -- 6.11.5. Conclusion -- PART 2: Queueing Theory -- 7: Introduction to the Queueing Theory -- 7.1. Presentation -- 7.2. Modeling of the computer networks -- 7.3. Description of a queue -- 7.4. Main parameters -- 7.5. Performance indicators -- 7.5.1. Usual parameters -- 7.5.2. Performance in steady state -- 7.6. The Little's law -- 7.6.1. Presentation -- 7.6.2. Applications -- 8: Poisson Process -- 8.1. Definition -- 8.1.1. Definition -- 8.1.2. Distribution of a Poisson process -- 8.2. Interarrival interval -- 8.2.1. Definition -- 8.2.2. Distribution of the interarrival interval Δ -- 8.2.3. Relation between N(t) and Δ -- 8.3. Erlang distribution -- 8.4. Superposition of independent Poisson processes -- 8.5. Decomposition of a Poisson process -- 8.6. Distribution of arrival instants over a given interval -- 8.7. The PASTA property -- 9: Markov Queueing Systems -- 9.1. Birth-and-death process -- 9.1.1. Definition -- 9.1.2. Differential equations -- 9.1.3. Steady-state solution -- 9.2. The M/M/1 queues -- 9.3. The M/M/∞ queues -- 9.4. The M/M/m queues -- 9.5. The M/M/1/K queues -- 9.6. The M/M/m/m queues -- 9.7. Examples.

9.7.1. Two identical servers with different activation thresholds -- 9.7.2. A cybercafe -- 10: The M/G/1 Queues -- 10.1. Introduction -- 10.2. Embedded Markov chain -- 10.3. Length of the queue -- 10.3.1. Number of arrivals during a service period -- 10.3.2. Pollaczek-Khinchin formula -- 10.3.3. Examples -- 10.4. Sojourn time -- 10.5. Busy period -- 10.6. Pollaczek-Khinchin mean value formula -- 10.7. M/G/1 queue with server vacation -- 10.8. Priority queueing systems -- 11: Queueing Networks -- 11.1. Generality -- 11.2. Jackson network -- 11.3. Closed network -- PART 3: Probability and Statistics -- 12: An Introduction to the Theory of Probability -- 12.1. Axiomatic base -- 12.1.1. Introduction -- 12.1.1.1. Sample space -- 12.1.1.2. Events -- 12.1.1.3. Probability -- 12.1.2. Probability space -- 12.1.2.1. σ-Algebra -- 12.1.2.2. Probability measure -- 12.1.2.3. Basic properties -- 12.1.3. Set language versus probability language -- 12.2. Conditional probability -- 12.2.1. Definition -- 12.2.2. Law of total probability -- 12.3. Independence -- 12.4. Random variables -- 12.4.1. Definition -- 12.4.2. Cumulative distribution function -- 12.4.3. Discrete random variables -- 12.4.3.1. Definition -- 12.4.3.2. Mathematical expectation -- 12.4.3.3. Probability generating function -- 12.4.4. Continuous random variables -- 12.4.4.1. Definition -- 12.4.4.2. Mathematical expectation -- 12.4.4.3. The Laplace transform -- 12.4.5. Characteristic function -- 12.5. Some common distributions -- 12.5.1. Bernoulli distribution -- 12.5.2. Binomial distribution -- 12.5.3. Poisson distribution -- 12.5.4. Geometric distribution -- 12.5.5. Uniform distribution -- 12.5.6. Triangular distribution -- 12.5.7. Exponential distribution -- 12.5.8. Normal distribution -- 12.5.9. Log-normal distribution -- 12.5.10. Pareto distribution.

12.6. Joint probability distribution of multiple random variables.
Abstract:
This book is devoted to the most used methodologies for performance evaluation: simulation using specialized software and mathematical modeling. An important part is dedicated to the simulation, particularly in its theoretical framework and the precautions to be taken in the implementation of the experimental procedure.  These principles are illustrated by concrete examples achieved through operational simulation languages ​​(OMNeT ++, OPNET). Presented under the complementary approach, the mathematical method is essential for the simulation. Both methodologies based largely on the theory of probability and statistics in general and particularly Markov processes, a reminder of the basic results is also available.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: