
GPS Satellite Surveying.
Title:
GPS Satellite Surveying.
Author:
Leick, Alfred.
ISBN:
9781119018285
Personal Author:
Edition:
4th ed.
Physical Description:
1 online resource (836 pages)
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Abbreviations -- Chapter 1 Introduction -- Chapter 2 Least-Squares Adjustments -- 2.1 Elementary Considerations -- 2.1.1 Statistical Nature of Surveying Measurements -- 2.1.2 Observational Errors -- 2.1.3 Accuracy and Precision -- 2.2 Stochastic and Mathematical Models -- 2.3 Mixed Model -- 2.3.1 Linearization -- 2.3.2 Minimization and Solution -- 2.3.3 Cofactor Matrices -- 2.3.4 A Posteriori Variance of Unit Weight -- 2.3.5 Iterations -- 2.4 Sequential Mixed Model -- 2.5 Model Specifications -- 2.5.1 Observation Equation Model -- 2.5.2 Condition Equation Model -- 2.5.3 Mixed Model with Observation Equations -- 2.5.4 Sequential Observation Equation Model -- 2.5.5 Observation Equation Model with Observed Parameters -- 2.5.6 Mixed Model with Conditions -- 2.5.7 Observation Equation Model with Conditions -- 2.6 Minimal and Inner Constraints -- 2.7 Statistics in Least-Squares Adjustment -- 2.7.1 Fundamental Test -- 2.7.2 Testing Sequential Least Squares -- 2.7.3 General Linear Hypothesis -- 2.7.4 Ellipses as Confidence Regions -- 2.7.5 Properties of Standard Ellipses -- 2.7.6 Other Measures of Precision -- 2.8 Reliability -- 2.8.1 Redundancy Numbers -- 2.8.2 Controlling Type-II Error for a Single Blunder -- 2.8.3 Internal Reliability -- 2.8.4 Absorption -- 2.8.5 External Reliability -- 2.8.6 Correlated Cases -- 2.9 Blunder Detection -- 2.9.1 Tau Test -- 2.9.2 Data Snooping -- 2.9.3 Changing Weights of Observations -- 2.10 Examples -- 2.11 Kalman Filtering -- Chapter 3 Recursive Least Squares -- 3.1 Static Parameter -- 3.2 Static Parameters and Arbitrary Time-Varying Variables -- 3.3 Dynamic Constraints -- 3.4 Static Parameters and Dynamic Constraints.
3.5 Static Parameter, Parameters Subject to Dynamic Constraints, and Arbitrary Time-Varying Parameters -- Chapter 4 Geodesy -- 4.1 International Terrestrial Reference Frame -- 4.1.1 Polar Motion -- 4.1.2 Tectonic Plate Motion -- 4.1.3 Solid Earth Tides -- 4.1.4 Ocean Loading -- 4.1.5 Relating of Nearly Aligned Frames -- 4.1.6 ITRF and NAD83 -- 4.2 International Celestial Reference System -- 4.2.1 Transforming Terrestrial and Celestial Frames -- 4.2.2 Time Systems -- 4.3 Datum -- 4.3.1 Geoid -- 4.3.2 Ellipsoid of Rotation -- 4.3.3 Geoid Undulations and Deflections of the Vertical -- 4.3.4 Reductions to the Ellipsoid -- 4.4 3D Geodetic Model -- 4.4.1 Partial Derivatives -- 4.4.2 Reparameterization -- 4.4.3 Implementation Considerations -- 4.4.4 GPS Vector Networks -- 4.4.5 Transforming Terrestrial and Vector Networks -- 4.4.6 GPS Network Examples -- 4.4.6.1 Montgomery County Geodetic Network -- 4.4.6.2 SLC Engineering Survey -- 4.4.6.3 Orange County Densification -- 4.5 Ellipsoidal Model -- 4.5.1 Reduction of Observations -- 4.5.1.1 Angular Reduction to Geodesic -- 4.5.1.2 Distance Reduction to Geodesic -- 4.5.2 Direct and Inverse Solutions on the Ellipsoid -- 4.5.3 Network Adjustment on the Ellipsoid -- 4.6 Conformal Mapping Model -- 4.6.1 Reduction of Observations -- 4.6.2 Angular Excess -- 4.6.3 Direct and Inverse Solutions on the Map -- 4.6.4 Network Adjustment on the Map -- 4.6.5 Similarity Revisited -- 4.7 Summary -- Chapter 5 Satellite Systems -- 5.1 Motion of Satellites -- 5.1.1 Kepler Elements -- 5.1.2 Normal Orbital Theory -- 5.1.3 Satellite Visibility and Topocentric Motion -- 5.1.4 Perturbed Satellite Motion -- 5.1.4.1 Gravitational Field of the Earth -- 5.1.4.2 Acceleration due to the Sun and the Moon -- 5.1.4.3 Solar Radiation Pressure -- 5.1.4.4 Eclipse Transits and Yaw Maneuvers.
5.2 Global Positioning System -- 5.2.1 General Description -- 5.2.2 Satellite Transmissions at 2014 -- 5.2.2.1 Signal Structure -- 5.2.2.2 Navigation Message -- 5.2.3 GPS Modernization Comprising Block IIM, Block IIF, and Block III -- 5.2.3.1 Introducing Binary Offset Carrier (BOC) Modulation -- 5.2.3.2 Civil L2C Codes -- 5.2.3.3 Civil L5 Code -- 5.2.3.4 M-Code -- 5.2.3.5 Civil L1C Code -- 5.3 GLONASS -- 5.4 Galileo -- 5.5 QZSS -- 5.6 Beidou -- 5.7 IRNSS -- 5.8 SBAS: WAAS, EGNOS, GAGAN, MSAS, and SDCM -- Chapter 6 GNSS Positioning Approaches -- 6.1 Observables -- 6.1.1 Undifferenced Functions -- 6.1.1.1 Pseudoranges -- 6.1.1.2 Carrier Phases -- 6.1.1.3 Range plus Ionosphere -- 6.1.1.4 Ionospheric-Free Functions -- 6.1.1.5 Ionospheric Functions -- 6.1.1.6 Multipath Functions -- 6.1.1.7 Ambiguity-Corrected Functions -- 6.1.1.8 Triple-Frequency Subscript Notation -- 6.1.2 Single Differences -- 6.1.2.1 Across-Receiver Functions -- 6.1.2.2 Across-Satellite Functions -- 6.1.2.3 Across-Time Functions -- 6.1.3 Double Differences -- 6.1.4 Triple Differences -- 6.2 Operational Details -- 6.2.1 Computing the Topocentric Range -- 6.2.2 Satellite Timing Considerations -- 6.2.2.1 Satellite Clock Correction and Timing Group Delay -- 6.2.2.2 Intersignal Correction -- 6.2.3 Cycle Slips -- 6.2.4 Phase Windup Correction -- 6.2.5 Multipath -- 6.2.6 Phase Center Offset and Variation -- 6.2.6.1 Satellite Phase Center Offset -- 6.2.6.2 User Antenna Calibration -- 6.2.7 GNSS Services -- 6.2.7.1 IGS -- 6.2.7.2 Online Computing -- 6.3 Navigation Solution -- 6.3.1 Linearized Solution -- 6.3.2 DOPs and Singularities -- 6.3.3 Nonlinear Closed Solution -- 6.4 Relative Positioning -- 6.4.1 Nonlinear Double-Difference Pseudorange Solution -- 6.4.2 Linearized Double- and Triple-Differenced Solutions -- 6.4.3 Aspects of Relative Positioning.
6.4.3.1 Singularities -- 6.4.3.2 Impact of a Priori Position Error -- 6.4.3.3 Independent Baselines -- 6.4.3.4 Antenna Swap Technique -- 6.4.4 Equivalent Undifferenced Formulation -- 6.4.5 Ambiguity Function -- 6.4.6 GLONASS Carrier Phase -- 6.5 Ambiguity Fixing -- 6.5.1 The Constraint Solution -- 6.5.2 LAMBDA -- 6.5.3 Discernibility -- 6.5.4 Lattice Reduction and Integer Least Squares -- 6.5.4.1 Branch-and-Bound Approach -- 6.5.4.2 Finke-Pohst Algorithm -- 6.5.4.3 Lattice Reduction Algorithms -- 6.5.4.4 Other Searching Strategies -- 6.5.4.5 Connection Between LAMBDA and LLL Methods -- 6.6 Network-Supported Positioning -- 6.6.1 PPP -- 6.6.2 CORS -- 6.6.2.1 Differential Phase and Pseudorange Corrections -- 6.6.2.2 RTK -- 6.6.3 PPP-RTK -- 6.6.3.1 Single-Frequency Solution -- 6.6.3.2 Dual-Frequency Solutions -- 6.6.3.3 Across-Satellite Differencing -- 6.7 Triple-Frequency Solutions -- 6.7.1 Single-Step Position Solution -- 6.7.2 Geometry-Free TCAR -- 6.7.2.1 Resolving EWL Ambiguity -- 6.7.2.2 Resolving the WL Ambiguity -- 6.7.2.3 Resolving the NL Ambiguity -- 6.7.3 Geometry-Based TCAR -- 6.7.4 Integrated TCAR -- 6.7.5 Positioning with Resolved Wide Lanes -- 6.8 Summary -- Chapter 7 Real-Time Kinematics Relative Positioning -- 7.1 Multisystem Considerations -- 7.2 Undifferenced and Across-Receiver Difference Observations -- 7.3 Linearization and Hardware Bias Parameterization -- 7.4 RTK Algorithm for Static and Short Baselines -- 7.4.1 Illustrative Example -- 7.5 RTK Algorithm for Kinematic Rovers and Short Baselines -- 7.5.1 Illustrative Example -- 7.6 RTK Algorithm with Dynamic Model and Short Baselines -- 7.6.1 Illustrative Example -- 7.7 RTK Algorithm with Dynamic Model and Long Baselines -- 7.7.1 Illustrative Example -- 7.8 RTK Algorithms with Changing Number of Signals.
7.9 Cycle Slip Detection and Isolation -- 7.9.1 Solutions Based on Signal Redundancy -- 7.10 Across-Receiver Ambiguity Fixing -- 7.10.1 Illustrative Example -- 7.11 Software Implementation -- Chapter 8 Troposphere and Ionosphere -- 8.1 Overview -- 8.2 Tropospheric Refraction and Delay -- 8.2.1 Zenith Delay Functions -- 8.2.2 Mapping Functions -- 8.2.3 Precipitable Water Vapor -- 8.3 Troposphere Absorption -- 8.3.1 The Radiative Transfer Equation -- 8.3.2 Absorption Line Profiles -- 8.3.3 General Statistical Retrieval -- 8.3.4 Calibration of WVR -- 8.4 Ionospheric Refraction -- 8.4.1 Index of Ionospheric Refraction -- 8.4.2 Ionospheric Function and Cycle Slips -- 8.4.3 Single-Layer Ionospheric Mapping Function -- 8.4.4 VTEC from Ground Observations -- 8.4.5 Global Ionospheric Maps -- 8.4.5.1 IGS GIMs -- 8.4.5.2 International Reference Ionosphere -- 8.4.5.3 GPS Broadcast Ionospheric Model -- 8.4.5.4 NeQuick Model -- 8.4.5.5 Transmission to the User -- Chapter 9 GNSS Receiver Antennas -- 9.1 Elements of Electromagnetic Fields and Electromagnetic Waves -- 9.1.1 Electromagnetic Field -- 9.1.2 Plane Electromagnetic Wave -- 9.1.3 Complex Notations and Plane Wave in Lossy Media -- 9.1.4 Radiation and Spherical Waves -- 9.1.5 Receiving Mode -- 9.1.6 Polarization of Electromagnetic Waves -- 9.1.7 The dB Scale -- 9.2 Antenna Pattern and Gain -- 9.2.1 Receiving GNSS Antenna Pattern and Reference Station and Rover Antennas -- 9.2.2 Directivity -- 9.2.3 Polarization Properties of the Receiving GNSS Antenna -- 9.2.4 Antenna Gain -- 9.2.5 Antenna Effective Area -- 9.3 Phase Center -- 9.3.1 Antenna Phase Pattern -- 9.3.2 Phase Center Offset and Variations -- 9.3.3 Antenna Calibrations -- 9.3.4 Group Delay Pattern -- 9.4 Diffraction and Multipath -- 9.4.1 Diffraction Phenomena.
9.4.2 General Characterization of Carrier Phase Multipath.
Abstract:
Employ the latest satellite positioning tech with this extensive guide GPS Satellite Surveying is the classic text on the subject, providing the most comprehensive coverage of global navigation satellite systems applications for surveying. Fully updated and expanded to reflect the field's latest developments, this new edition contains new information on GNSS antennas, Precise Point Positioning, Real-time Relative Positioning, Lattice Reduction, and much more. New contributors offer additional insight that greatly expands the book's reach, providing readers with complete, in-depth coverage of geodetic surveying using satellite technologies. The newest, most cutting-edge tools, technologies, and applications are explored in-depth to help readers stay up to date on best practices and preferred methods, giving them the understanding they need to consistently produce more reliable measurement. Global navigation satellite systems have an array of uses in military, civilian, and commercial applications. In surveying, GNSS receivers are used to position survey markers, buildings, and road construction as accurately as possible with less room for human error. GPS Satellite Surveying provides complete guidance toward the practical aspects of the field, helping readers to: Get up to speed on the latest GPS/GNSS developments Understand how satellite technology is applied to surveying Examine in-depth information on adjustments and geodesy Learn the fundamentals of positioning, lattice adjustment, antennas, and more The surveying field has seen quite an evolution of technology in the decade since the last edition's publication. This new edition covers it all, bringing the reader deep inside the latest tools and techniques being used on the job. Surveyors, engineers, geologists, and anyone looking to employ satellite positioning will find GPS Satellite
Surveying to be of significant assistance.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View