Cover image for Handbook of Polymers for Pharmaceutical Technologies, Processing and Applications.
Handbook of Polymers for Pharmaceutical Technologies, Processing and Applications.
Title:
Handbook of Polymers for Pharmaceutical Technologies, Processing and Applications.
Author:
Thakur, Vijay Kumar.
ISBN:
9781119041405
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (490 pages)
Contents:
Cover -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- 1 Particle Engineering of Polymers into Multifunctional Interactive Excipients -- 1.1 Introduction -- 1.2 Polymers as Excipients -- 1.3 Material Properties Affecting Binder Activity -- 1.3.1 Particle Size -- 1.3.2 Deformation Mechanisms -- 1.3.3 Glass Transition Temperature (Tg) -- 1.4 Strategies for Improving Polymeric Filler-Binder Performance for Direct Compression -- 1.4.1 Interactive Mixing -- 1.4.2 Challenges to Interactive Mixing -- 1.4.3 Controlling Interparticle Cohesion -- 1.5 Preparation and Characterization of Interactive Excipients -- 1.5.1 Particle Size and Size Distribution of Excipients -- 1.5.2 Effect of L-leucine on Surface Morphology -- 1.5.3 Effect of L-leucine on Surface Composition -- 1.5.4 Effect of L-leucine on Surface Energy -- 1.5.5 Effect of L-leucine on Interparticle Cohesion -- 1.6 Performance of Interactive Excipients -- 1.6.1 Blending Ability -- 1.6.2 Effect on Flow -- 1.6.3 Binder Activity -- 1.7 Investigation of the Effect of Polymer Mechanical Properties -- 1.8 Conclusion -- References -- 2 The Art of Making Polymeric Membranes -- 2.1 Introduction -- 2.2 Types of Membranes -- 2.2.1 Porous Membranes -- 2.2.2 Nonporous Membranes -- 2.2.3 Liquid Membranes (Carrier Mediated Transport) -- 2.2.4 Asymmetric Membranes -- 2.3 Preparation of Membranes -- 2.3.1 Phase Inversion/Separation -- 2.3.2 Vapor-Induced Phase Separation (VIPS) -- 2.3.3 Thermally-Induced Phase Separation (TIPS) -- 2.3.4 Immersion Precipitation -- 2.3.5 Film/Dry Casting Technique -- 2.3.6 Track Etching -- 2.3.7 Electrospinning -- 2.3.7.1 Preparation of Electrospun Nanofiber Membranes (ENMs) with Single Component -- 2.3.7.2 Preparation of Nanofibers with Two Side-by-Side Components -- 2.3.7.3 Preparation of Core-Sheath and Hollow Nanofibers -- 2.3.8 Spraying -- 2.3.9 Foaming.

2.3.10 Particle Leaching -- 2.3.11 Precipitation from the Vapor Phase -- 2.3.12 Emulsion Freeze-Drying -- 2.3.13 Sintering -- 2.3.14 Stretching -- 2.3.15 Composite/Supported -- 2.3.16 Mixed Matrix Membranes (MMMs) -- 2.3.17 Hollow Fiber Membranes -- 2.3.17.1 Methods for Spinning -- 2.3.18 Metal-Organic Frameworks (MOFs) -- 2.4 Modification of Membranes -- 2.4.1 Modification of Polymeric Membrane by Additives/Blending -- 2.4.2 Coating -- 2.4.3 Surface Modification by Chemical Reaction -- 2.4.4 Interfacial Polymerization (IP)/Copolymerization -- 2.4.5 Plasma Polymerization/Treatment -- 2.4.6 Surface Modification by Irradiation of High Energy Particles -- 2.4.7 UV Irradiation -- 2.4.8 Ion-Beam Irradiation -- 2.4.9 Surface Modification by Heat Treatment -- 2.4.10 Graft Polymerization/Grafting -- 2.4.11 Other Techniques -- 2.5 Characterization of Membrane by Different Techniques -- 2.5.1 Conventional Physical Methods to Determine Pore Size and Pore Size Distribution -- 2.5.1.1 Bubble Gas Transport Method -- 2.5.1.2 Mercury Intrusion Porosimetry -- 2.5.1.3 Gas Liquid Equilibrium Method (Permporometry) -- 2.5.1.4 Adsorption-Desorption Method: Barett-Joyner-Halenda (BJH) Method -- 2.5.1.5 Permeability Methods -- 2.5.2 Morphology -- 2.5.2.1 Microscopic Method -- 2.5.2.2 Spectroscopic Method -- 2.5.2.3 Positron Annihilation Spectroscopy (PAL) -- 2.5.2.4 X-Ray Analysis and Other Methods -- 2.5.3 Thermal Properties -- 2.5.4 Mechanical Properties -- 2.5.4.1 Tensile Strength -- 2.5.4.2 Young's Modulus or Tensile Modulus of Elasticity -- 2.6 Summary -- References -- 3 Development of Microstructuring Technologies of Polycarbonate for Establishing Advanced Cell Cultivation Systems -- 3.1 Introduction -- 3.2 Material Properties of Polycarbonate -- 3.2.1 Physical Properties -- 3.2.2 Chemical Properties -- 3.2.3 Biological Properties.

3.3 Use of Polycarbonate Foils in Structuration Processes -- 3.3.1 Hot Embossing -- 3.3.2 Thermoforming -- 3.4 Simulation of Microstructuring of a Polycarbonate Foil -- 3.5 Chemical Functionalization of Polycarbonate -- 3.6 Surface Micropatterning of Polycarbonate -- 3.7 Application Examples -- 3.7.1 3D Liver Cell Cultivation in Polycarbonate Scaffolds -- 3.7.2 3D Lung Cell Cultivation in Semi-Actively Perfused Systems -- 3.7.3 Guiding 3D Cocultivation of Cells by Micropatterning Techniques -- 3.8 Conclusion and Further Perspectives -- Acknowledgements -- References -- 4 In-Situ Gelling Thermosensitive Hydrogels for Protein Delivery Applications -- 4.1 Introduction -- 4.2 Polymers for the Design of Hydrogels -- 4.2.1 Polymer Architectures -- 4.2.2 Natural, Synthetic and Hybrid Hydrogels -- 4.2.3 Crosslinking Methods -- 4.2.4 Thermogelling Polymer Hydrogels -- 4.3 Pharmaceutical Applications of Hydrogels: Protein Delivery -- 4.3.1 Strategies for Protein Release from Hydrogels -- 4.3.1.1 Physical Entrapment of Proteins into Hydrogels: General Principles and Release Mechanisms -- 4.3.1.2 Covalent Binding -- 4.3.1.3 Dual/Multiple Delivery Systems -- 4.4 Application of Hydrogels for Protein Delivery in Tissue Engineering -- 4.5 Conclusions -- References -- 5 Polymers as Formulation Excipients for Hot-Melt Extrusion Processing of Pharmaceuticals -- 5.1 Introduction -- 5.1.1 Overview of Hot-Melt Extrusion (HME) -- 5.1.2 Solubility/Dissolution Enhancement by Solid Dispersions -- 5.2 Polymers for HME Processing -- 5.2.1 Basic Requirements -- 5.2.2 Suitability - Examples -- 5.3 Polymer Selection for the HME Process -- 5.3.1 Thermodynamic Considerations - Drug-Polymer Solubility and Miscibility -- 5.4 Processing of HME Formulations -- 5.4.1 Physical Properties of Feeding Material - Flowability, Packing and Friction -- 5.4.1.1 Crystallinity.

5.4.1.2 Molecular Weight and Viscosity -- 5.5 Improvements in Processing -- 5.5.1 Equipment Modifications -- 5.5.2 Plasticizers -- 5.5.2.1 Drugs Acting as Plasticizers -- 5.2.2.2 Extrusion Based on Use of Plasticizers -- 5.6 Conclusion and Future Perspective -- References -- 6 Poly Lactic-Co-Glycolic Acid (PLGA) Copolymer and Its Pharmaceutical Application -- 6.1 Introduction -- 6.2 Physicochemical Properties -- 6.3 Biodegradation -- 6.4 Biocompatibiliy, Toxicty and Pharmacokinetics -- 6.5 Mechanism of Drug Release -- 6.6 PLGA-Based DDS -- 6.7 Bone Regeneration -- 6.8 Pulmonary Delivery -- 6.9 Gene Therapy -- 6.10 Tumor Trageting -- 6.11 Miscellaneous Drug Delivery Applications -- 6.12 Conclusion -- References -- 7 Pharmaceutical Applications of Polymeric Membranes -- 7.1 Introduction -- 7.2 Obtaining Pure and Ultrapure Water for Pharmaceutical Usage -- 7.3 Wastewater Treatment for Pharmaceutics -- 7.4 Controlled Drug Delivery Devices Based on Membrane Materials -- 7.5 Molecularly Imprinted Membranes -- 7.6 Conclusions -- References -- 8 Application of PVC in Construction of Ion-Selective Electrodes for Pharmaceutical Analysis: A Review of Polymer Electrodes for Nonsteroidal, Anti-Inflammatory Drugs -- 8.1 Introduction -- 8.2 Properties and Usage of Poly(vinyl)chloride (PVC) -- 8.3 PVC Application and Properties in Construction of Potentiometric Sensors for Drug Detection -- 8.3.1 Role of Polymer Membrane Components -- 8.4 Ion-Selective, Classic, Liquid Electrodes (ISEs) -- 8.5 Ion-Selective Solid-State Electrodes -- 8.5.1 Ion-Selective Coated-Wire Electrodes (CWE) -- 8.5.2 Ion-Selective BMSA Electrodes -- 8.5.3 Electrodes Based on Conductive Polymers (SC-ISEs ) -- 8.6 Application of Polymer-Based ISEs for Determination of Analgetic, Anti-Inflammatory and Antipyretic Drugs: Literature Review (2000-2014).

8.6.1 Electrodes for Determination of Narcotic Medicines -- 8.6.2 Electrode Sensitive to Dextromethorphan -- 8.6.3 Electrode Sensitive to Tramadol -- 8.6.4 Electrodes for Determination of Non-Narcotic Drugs -- 8.6.5 Salicylate Electrode -- 8.6.6 Ibuprofen Electrode -- 8.6.7 Ketoprofen Electrodes -- 8.6.8 Piroxicam Electrode -- 8.6.9 Tenoxicam Electrode -- 8.6.10 Naproxen Electrodes -- 8.6.11 Indomethacin Electrodes -- 8.6.12 Sulindac Electrode -- 8.6.13 Diclofenac Electrodes -- 8.7 Conclusion -- References -- 9 Synthesis and Preservation of Polymer Nanoparticles for Pharmaceutical Applications -- 9.1 Introduction: Polymer Nanoparticles Production -- 9.2 Production of Polymer Nanoparticles by Solvent Displacement Using Intensive Mixers -- 9.2.1 Influence of Polymer-Solvent Type and Hydrodynamics on Particle Size -- 9.2.2 Dependence on Operating Conditions - Polymer and Drug Concentration, Solvent/Antisolvent Ratio, Processing Conditions -- 9.2.3 Process Design: Selection of Mixing Device, Scale Up and Process Transfer -- 9.3 Freeze-Drying of Nanoparticles -- 9.4 Conclusions and Perspectives -- Acknowledgements -- References -- 10 Pharmaceutical Applications of Maleic Anhydride/Acid Copolymers -- 10.1 Introduction -- 10.2 Maleic Copolymers as Macromolecular Drugs -- 10.3 Maleic Copolymer Conjugates -- 10.3.1 Polymer-Protein Conjugates -- 10.3.2 Polymer-Drug Conjugates -- 10.4 Noncovalent Drug Delivery Systems -- 10.4.1 Enteric Coatings -- 10.4.2 Solid Dispersions -- 10.4.3 Polymeric Films and Hydrogels -- 10.4.4 Microspheres and Microcapsules -- 10.4.5 Nanoparticles -- 10.4.6 Micelles -- 10.5 Conclusion -- References -- 11 Stimuli-Sensitive Polymeric Nanomedicines for Cancer Imaging and Therapy -- 11.1 Introduction -- 11.2 Pathophysiological and Physical Triggers -- 11.2.1 Acidosis -- 11.2.1.1 pH-Sensitive Tumor Imaging.

11.2.1.2 pH-Sensitive Prodrugs.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: