
Handbook of Mineral Elements in Food.
Title:
Handbook of Mineral Elements in Food.
Author:
de la Guardia, Miguel.
ISBN:
9781118654347
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (803 pages)
Contents:
Title Page -- Copyright Page -- Contents -- List of contributors -- Preface -- Chapter 1 The importance of minerals in the human diet -- 1.1 Historical aspects -- 1.2 Types and metabolic function of mineral nutrients -- 1.3 Essentiality and toxicological aspects -- 1.4 Diagnosis of mineral status -- 1.5 Food culture and mineral diet content -- 1.6 Health consequences of human mineral malnutrition or excessive intake -- 1.7 Minerals, health and ageing -- 1.8 Foods or supplements as a source of minerals -- 1.9 The effect of dietetic interventions on mineral status -- 1.10 Current research and development -- Acknowledgements -- Abbreviations -- References -- Chapter 2 Dietary intake of minerals -- 2.1 Essential, trace and toxic elements in foods -- 2.1.1 Iron -- 2.1.2 Calcium -- 2.1.3 Zinc -- 2.1.4 Selenium -- 2.1.5 Copper -- 2.1.6 Magnesium -- 2.2 Recommended daily intake -- 2.2.1 Dietary recommendations for iron -- 2.2.2 Dietary recommendations for calcium -- 2.2.3 Dietary recommendations for zinc -- 2.2.4 Dietary recommendations for selenium -- 2.2.5 Dietary recommendations for copper -- 2.2.6 Dietary recommendations for magnesium -- 2.3 The presence of minerals in diets -- 2.3.1 Dietary iron -- 2.3.2 Dietary calcium -- 2.3.3 Dietary zinc -- 2.3.4 Dietary selenium -- 2.3.5 Dietary copper -- 2.3.6 Dietary magnesium -- 2.4 Total content in complete diets -- 2.5 New challenges: speciation -- 2.5.1 Micronutrient interactions in food and bioavailability -- 2.5.2 Current methods of processing: nutritional consequences -- 2.5.3 Assesment of nutritional quality: optimization and food design -- 2.5.4 A new paradigm for meeting human needs -- Abbreviations -- References -- Chapter 3 Bioavailability of minerals in foods -- 3.1 Bioavailability: concept, bioaccessibility and bioactivity -- 3.1.1 Definitions -- 3.1.2 Factors influencing bioavailability.
3.1.3 Effect of processing on mineral bioavailability -- 3.2 Methods for evaluating mineral bioavailability -- 3.2.1 In vivo bioavailability methods -- 3.2.2 In vitro bioavailability methods -- 3.3 Bioavailability of minerals of nutritional interest: Ca, Fe, Zn, Se -- 3.3.1 Calcium -- 3.3.2 Iron -- 3.3.3 Zinc -- 3.3.4 Selenium -- 3.4 Bioavailability of minerals with toxicological risk: As, Hg, Cd, Pb -- 3.4.1 Arsenic -- 3.4.2 Mercury -- 3.4.3 Cadmium -- 3.4.4 Lead -- Abbreviations -- References -- Chapter 4 Human risk assessment and regulatory framework for minerals in food -- 4.1 Introduction -- 4.2 Dietary exposure and risk assessment of trace elements -- 4.2.1 Hazard identification and characterization -- 4.2.2 Exposure assessment and risk characterization -- 4.3 Human biomonitoring for risk assessment of metals -- 4.3.1 Biomarker characterization -- 4.3.2 Biomonitoring programmes and studies -- 4.3.3 Risk characterization using biomonitoring -- 4.4 Risk management and regulatory framework -- 4.4.1 Legislative framework and regulated levels in food -- 4.4.2 Monitoring, sampling and methods of analysis -- 4.4.3 The European Community's Rapid Alert System for Food and Feed -- 4.5 Conclusions and future perspectives -- Abbreviations -- References -- Chapter 5 The oligoelements -- 5.1 Considerations -- 5.2 Importance of oligoelements -- 5.3 The oligoelements -- 5.3.1 Arsenic -- 5.3.2 Boron -- 5.3.3 Chromium -- 5.3.4 Cobalt -- 5.3.5 Copper -- 5.3.6 Fluoride -- 5.3.7 Iodine -- 5.3.8 Iron -- 5.3.9 Magnesium -- 5.3.10 Manganese -- 5.3.11 Molybdenum -- 5.3.12 Nickel -- 5.3.13 Selenium -- 5.3.14 Sulfur -- 5.3.15 Tin -- 5.3.16 Vanadium -- 5.3.17 Zinc -- 5.4 The functional specificity of oligoelements -- 5.5 Nutritional aspects, deficiencies and excess of oligoelements -- 5.6 Conclusions -- Acknowledgements -- Abbreviations -- References.
Chapter 6 The toxic elements -- 6.1 Toxic metals in foods -- 6.2 Beryllium -- 6.2.1 General information -- 6.2.2 Environmental considerations -- 6.2.3 Toxic effects -- 6.2.4 Beryllium in foods -- 6.3 Cadmium -- 6.3.1 General information -- 6.3.2 Environmental considerations -- 6.3.3 Toxic effects -- 6.3.4 Cadmium in foods -- 6.4 Lead -- 6.4.1 General information -- 6.4.2 Environmental considerations -- 6.4.3 Toxic effects -- 6.4.4 Lead in foods -- 6.5 Mercury -- 6.5.1 General information -- 6.5.2 Environmental considerations -- 6.5.3 Toxic effects -- 6.5.4 Mercury in food -- Abbreviations -- References -- Chapter 7 Geographical variation of land mineral composition -- 7.1 Chemical composition of the earth's crust -- 7.2 Natural abundance of chemical elements -- 7.3 Soil-forming factors and processes -- 7.4 Soil geographic variation and mapping -- 7.5 Bioavailability of chemical elements in soil -- 7.6 Extraction techniques for estimating bioavailability of nutrients and metals in soils -- 7.6.1 Exchangeable cations -- 7.6.2 Extractions with Mehlich-I, Mehlich-II and Mehlich-III solutions -- 7.6.3 Oxalic acid/ammonium oxalate (under darkness) -- 7.6.4 Dithionite-citrate-bicarbonate (DCB) method -- 7.6.5 EDTA and DTPA methods -- 7.6.6 Pyrophosphate extraction -- 7.6.7 Exchange resins -- 7.6.8 Sequential extractions -- 7.6.9 Passive samplers -- 7.6.10 Biological assays -- Acknowledgements -- Abbreviations -- References -- Chapter 8 Variation of food mineral content during industrial and culinary processing -- 8.1 Introduction -- 8.2 Effects of refrigeration on mineral composition -- 8.3 Effects of cooking procedures on the mineral content of different types of foods -- 8.4 Bioaccessibility and bioavailability of minerals after cooking -- 8.5 Changes in essential trace element content during industrial processing.
8.6 Fortification of foods with minerals -- 8.7 Changes in element speciation during the cooking procedure -- 8.8 Conclusion -- Abbreviations -- References -- Chapter 9 Speciation analysis of food -- 9.1 Speciation, bioaccessibility and bioavailability -- 9.2 From the isotopic composition to the molecular structure -- 9.2.1 Isotopic composition -- 9.2.2 Electronic or oxidation state -- 9.2.3 Complex or molecular structure -- 9.3 Challenging elements in food for speciation analysis -- 9.4 The cycle of the elements from nature to food sources and metabolites -- 9.4.1 Uptake and accumulation -- 9.4.2 Intake, bioavailability, bioaccessibility and excretion -- 9.5 The role of elemental speciation in legislation -- 9.6 Conclusions and future trends -- Abbreviations -- References -- Chapter 10 Atomic absorption spectrometry -- 10.1 Atomic spectrometry: history -- 10.2 Introduction -- 10.3 Electromagnetic radiation: interaction with atoms -- 10.4 Relationship between concentration and analytical signal -- 10.5 The source of electromagnetic radiation -- 10.6 The flame atomizer -- 10.7 Detection of the radiation -- 10.8 Spectrometer configuration: correction devices -- 10.9 Calibration -- 10.10 Interferences -- 10.11 Alternative ways of sample introduction in FAAS -- 10.12 Techniques involving vapour generation -- 10.12.1 Cold vapour technique -- 10.12.2 Hydride generation technique -- 10.13 Electrothermal atomization -- 10.13.1 Types of atomizer -- 10.13.2 Heating program -- 10.13.3 Chemical modifiers -- 10.13.4 Background correction -- 10.13.5 Sample introduction -- 10.14 Speciation -- 10.14.1 Non-chromatographic procedures -- 10.14.2 Chromatographic procedures -- 10.15 Sample treatment -- 10.16 Conclusions -- Abbreviations -- References -- Chapter 11 Elemental composition analysis of food by FAES and ICP-OES.
11.1 Sampling and sample preparation for FAES and ICP-OES determination -- 11.1.1 Sampling -- 11.1.2 Food treatment for elemental analysis by atomic emission spectrometry -- 11.2 Inorganic analysis of major, minor and trace elements in food samples -- 11.2.1 Flame emission techniques for analysis of food samples -- 11.2.2 ICP-OES applied to food analysis -- 11.3 Conclusions and future trends -- Abbreviations -- References -- Chapter 12 New developments in food analysis by ICP-MS -- 12.1 Inductively coupled plasma as ion source for mass spectrometry -- 12.1.1 Sample introduction into the ICP -- 12.1.2 Extraction of the ions into the mass spectrometer -- 12.1.3 Mass spectrometers employed in ICP-MS -- 12.1.4 Ion detection -- 12.2 Spectral interpretation in ICP-MS -- 12.2.1 Removal of spectral interferences -- 12.2.2 Qualitative analysis -- 12.3 Quantification modes in ICP-MS -- 12.3.1 Semi-quantitative analysis using the response curve -- 12.3.2 Calibration with internal standards -- 12.3.3 Isotope dilution mass spectrometry -- 12.4 Total elemental analysis -- 12.4.1 Legal requirements -- 12.4.2 Sample preparation procedures -- 12.4.3 Examples of food and beverages analysis -- 12.4.4 Validation of methodologies: food reference materials -- 12.5 Speciation analysis -- 12.5.1 Separation techniques employed in speciation analysis using ICP-MS -- 12.5.2 Elements of interest in food and beverages -- 12.5.3 Extraction procedures -- 12.5.4 Bioavalability studies -- 12.5.5 Isotope dilution mass spectrometry -- 12.6 Provenance studies -- Abbreviations -- References -- Chapter 13 Electroanalytical methods: application of electrochemical techniques for mineral elements analysis in food -- 13.1 Introduction -- 13.2 Ion-selective electrodes -- 13.2.1 Alkaline earth and alkaline ions -- 13.2.2 Divalent metal ions other than alkaline earth ions.
13.2.3 Trivalent metal ions.
Abstract:
Mineral elements are found in foods and drink of all different types, from drinking water through to mothers' milk. The search for mineral elements has shown that many trace and ultratrace-level elements presented in food are required for a healthy life. By identifying and analysing these elements, it is possible to evaluate them for their specific health-giving properties, and conversely, to isolate their less desirable properties with a view to reducing or removing them altogether from some foods. The analysis of mineral elements requires a number of different techniques - some methods may be suitable for one food type yet completely unsuited to another. The Handbook of Mineral Elements in Food is the first book to bring together the analytical techniques, the regulatory and legislative framework, and the widest possible range of food types into one comprehensive handbook for food scientists and technologists. Much of the book is based on the authors' own data, most of which is previously unpublished, making the Handbook of Mineral Elements in Food a vital and up-to-the-minute reference for food scientists in industry and academia alike. Analytical chemists, nutritionists and food policy makers will also find it an invaluable resource. Showcasing contributions from international researchers, and constituting a major resource for our future understanding of the topic, the Handbook of Mineral Elements in Food is an essential reference and should be found wherever food science and technology are researched and taught.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View