
Bio-Nanoparticles : Biosynthesis and Sustainable Biotechnological Implications.
Title:
Bio-Nanoparticles : Biosynthesis and Sustainable Biotechnological Implications.
Author:
Singh, Om V.
ISBN:
9781118677667
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (398 pages)
Contents:
Title Page -- Copyright Page -- Contents -- List of Contributors -- Introduction -- Chapter 1 Diversity of Microbes in Synthesis of Metal Nanoparticles: Progress and Limitations -- 1.1. Introduction -- 1.2. Synthesis of Nanoparticles by Bacteria -- 1.3. Synthesis of Nanoparticles by Fungi -- 1.4. Synthesis of Nanoparticles by Algae -- 1.5. Applications of Metal Nanoparticles -- 1.5.1. Nanoparticles as Catalyst -- 1.5.2. Nanoparticles as Bio-membranes -- 1.5.3. Nanoparticles in Cancer Treatment -- 1.5.4. Nanoparticles in Drug Delivery -- 1.5.5. Nanoparticles for Detection and Destruction of Pesticides -- 1.5.6. Nanoparticles in Water Treatment -- 1.6. Limitations of Synthesis of Biogenic Nanoparticles -- Conclusion -- Acknowledgements -- References -- Chapter 2 Role of Fungi Toward Synthesis of Nano-Oxides -- 2.1. Introduction -- 2.2. Fungus-Mediated Synthesis of Nanomaterials -- 2.2.1. Biosynthesis of Binary Nano-oxides using Chemical Precursors -- 2.2.2. Biosynthesis of Complex Mixed-metal Nano-oxides using Chemical Precursors -- 2.2.3. Biosynthesis of Nano-oxides using Natural Precursors employing Bioleaching Approach -- 2.2.4. Biosynthesis of Nano-oxides Employing Bio-milling Approach -- 2.3. Outlook -- References -- Chapter 3 Microbial Molecular Mechanisms in Biosynthesis of Nanoparticles -- 3.1. Introduction -- 3.2. Chemical Synthesis of Metal Nanoparticles -- 3.2.1. Brust-Schiffrin Synthesis -- 3.3. Green Synthesis -- 3.4. Biosynthesis of Nanoparticles -- 3.5. Mechanisms for Formation or Synthesis of Nanoparticles -- 3.5.1. Biomineralization using Magnetotactic Bacteria (MTB) -- 3.5.2. Reduction of Tellurite using Phototroph Rhodobacter capsulatus -- 3.5.3. Formation of AgNPs using Lactic Acid and Bacteria -- 3.5.4. Microfluidic Cellular Bioreactor for the Generation of Nanoparticles.
3.5.5. Proteins and Peptides in the Synthesis of Nanoparticles -- 3.5.6. NADH-dependent Reduction by Enzymes -- 3.5.7. Sulfate and Sulfite Reductase -- 3.5.8. Cyanobacteria -- 3.5.9. Cysteine Desulfhydrase in Rhodopseudomonas palustris -- 3.5.10. Nitrate and Nitrite reductase -- 3.6. Extracellular Synthesis of Nanoparticles -- 3.6.1. Bacterial Excretions -- 3.6.2. Fungal Strains -- 3.6.3. Yeast: Oxido-reductase Mechanism -- 3.6.4. Plant Extracts -- 3.7. Conclusion -- References -- Chapter 4 Biofilms in Bio-Nanotechnology: Opportunities and Challenges -- 4.1. Introduction -- 4.2. Microbial Synthesis of Nanomaterials -- 4.2.1. Overview -- 4.2.2. Significance of Biofilms in Biosynthesis of Nanomaterials -- 4.2.3. Synthesis of Nanomaterials using Biofilms -- 4.3. Interaction of Microbial Biofilms with Nanomaterials -- 4.3.1. Nanomaterials as Anti-biofilm Agents -- 4.3.2. Nanomaterials as a Tool in Biofilm Studies -- 4.4. Future Perspectives -- Acknowledgements -- References -- Chapter 5 Extremophiles and Biosynthesis of Nanoparticles: Current and Future Perspectives -- 5.1. Introduction -- 5.2. Synthesis of Nanoparticles -- 5.2.1. Microorganisms: An Asset in Nanoparticle Biosynthesis -- 5.2.2. Extremophiles in Nanoparticle Biosynthesis -- 5.3. Mechanism of Nanoparticle Biosynthesis -- 5.4. Fermentative Production of Nanoparticles -- 5.5. Nanoparticle Recovery -- 5.6. Challenges and Future Perspectives -- 5.7. Conclusion -- References -- Chapter 6 Biosynthesis of Size-Controlled Metal and Metal Oxide Nanoparticles by Bacteria -- 6.1. Introduction -- 6.2. Intracellular Synthesis of Metal Nanoparticles by Bacteria -- 6.3. Extracellular Synthesis of Metal Nanoparticles by Bacteria -- 6.4. Synthesis of Metal Oxide and Sulfide Nanoparticles by Bacteria -- 6.5. Conclusion -- References.
Chapter 7 Methods of Nanoparticle Biosynthesis for Medical and Commercial Applications -- 7.1. Introduction -- 7.2. Biosynthesis of Nanoparticles Using Bacteria -- 7.2.1. Synthesis of Silver Nanoparticles by Bacteria -- 7.2.2. Synthesis of Gold Nanoparticles by Bacteria -- 7.2.3. Synthesis of other Metallic Nanoparticles by Bacteria -- 7.3. Biosynthesis of Nanoparticles Using Actinomycete -- 7.4. Biosynthesis of Nanoparticles Using Fungi -- 7.5. Biosynthesis of Nanoparticles Using Plants -- 7.6. Conclusions -- References -- Chapter 8 Microbial Synthesis of Nanoparticles: An Overview -- 8.1. Introduction -- 8.2. Nanoparticles Synthesis Inspired by Microorganisms -- 8.2.1. Bacteria in NPs Synthesis -- 8.2.2. Fungi in NPs Synthesis -- 8.2.3. Actinomycetes in NPs Synthesis -- 8.2.4. Yeast in NPs Synthesis -- 8.2.5. Virus in NPs Synthesis -- 8.3. Mechanisms of Nanoparticles Synthesis -- 8.4. Purification and Characterization of Nanoparticles -- 8.5. Conclusion -- References -- Chapter 9 Microbial Diversity of Nanoparticle Biosynthesis -- 9.1. Introduction -- 9.2. Microbial-Mediated Nanoparticles -- 9.2.1. Gold -- 9.2.2. Silver -- 9.2.3. Selenium -- 9.2.4. Silica -- 9.2.5. Cadmium -- 9.2.6. Palladium -- 9.2.7. Zinc -- 9.2.8. Lead -- 9.2.9. Iron -- 9.2.10. Copper -- 9.2.11. Cerium -- 9.2.12. Microbial Quantum Dots -- 9.2.13. Cadmium Telluride -- 9.2.14. Iron Sulfide-greigite -- 9.3. Native and Engineered Microbes for Nanoparticle Synthesis -- 9.4. Commercial Aspects of Microbial Nanoparticle Synthesis -- 9.5. Conclusion -- References -- Chapter 10 Sustainable Synthesis of Palladium(0) Nanocatalysts and their Potential for Organohalogen Compounds Detoxification -- 10.1. Introduction -- 10.2. Chemically Generated Palladium Nanocatalysts for Hydrodechlorination: Current Methods and Materials -- 10.2.1. Pd Catalysts -- 10.2.2. Data Analysis.
10.2.3. Pd as Dehalogenation Catalyst -- 10.2.4. Intrinsic Potential vs. Performance -- 10.2.5. Concepts for Pd Protection -- 10.3. Bio-Supported Synthesis of Palladium Nanocatalysts -- 10.3.1. Background -- 10.4. Current Approaches for Synthesis of Palladium Catalysts in the Presence of Microorganisms -- 10.4.1. Pd(II)-Tolerant Microorganisms for Future Biotechnological Approaches -- 10.4.2. Controlling Size and Morphology during Bio-Synthesis -- 10.4.3. Putative and Documented Mechanisms of Biosynthesis of Palladium Nanoparticles -- 10.4.4. Isolation of Nanocatalysts from the Cell Matrix and Stabilization -- 10.5. Bio-Palladium(0)-Nanocatalyst Mediated Transformation of Organohalogen Pollutants -- 10.6. Conclusions -- Acknowledgements -- References -- Chapter 11 Environmental Processing of Zn CONTAINING Wastes and Generation of Nanosized Value-Added Products -- 11.1. Introduction -- 11.1.1. World Status of Zinc Production -- 11.1.2. Environmental Impact of the Process Wastes Generated -- 11.1.3. Production Status in India -- 11.1.4. Recent Attempts at Processing Low-Grade Ores and Tailings -- 11.2. Physical/Chemical/Hydrothermal Processing -- 11.2.1. Extraction of Pb-Zn from Tailings for Utilization and Production in China -- 11.2.2. Vegetation Program on Pb-Zn Tailings -- 11.2.3. Recovering Valuable Metals from Tailings and Residues -- 11.2.4. Extraction of Vanadium, Lead and Zinc from Mining Dump in Zambia -- 11.2.5. Recovery of Zinc from Blast Furnace and other Dust/Secondary Resources -- 11.2.6. Treatment and Recycling of Goethite Waste -- 11.2.7. Other Hydrometallurgical Treatments of Zinc-based Industrial Wastes and Residues -- 11.3. Biohydrometallurgical Processing: International SCENARIO -- 11.3.1. Bioleaching of Zn from Copper Mining Residues by Aspergillus niger.
11.3.2. Bioleaching of Zinc from Steel Plant Waste using Acidithiobacillus ferrooxidans -- 11.3.3. Bacterial Leaching of Zinc from Chat (Chert) Pile Rock and Copper from Tailings Pond Sediment -- 11.3.4. Dissolution of Zn from Zinc Mine Tailings -- 11.3.5. Microbial Diversity in Zinc Mines -- 11.3.6. Chromosomal Resistance Mechanisms of A. ferrooxidans on Zinc -- 11.3.7. Bioleaching of Zinc Sulfides by Acidithiobacillus ferrooxidans -- 11.3.8. Bioleaching of High-sphalerite Material -- 11.3.9. Bioleaching of Low-grade ZnS Concentrate and Complex Sulfides (Pb-Zn) using Thermophilic Species -- 11.3.10. Improvement of Stains for Bio-processing of Sphalerite -- 11.3.11. Tank Bioleaching of ZnS and Zn Polymetallic Concentrates -- 11.3.12. Large-Scale Development for Zinc Concentrate Bioleaching -- 11.3.13. Scale-up Studies for Bioleaching of Low-Grade Sphalerite Ore -- 11.3.14. Zinc Resistance Mechanism in Bacteria -- 11.4. Biohydrometallurgical Processing: Indian Scenario -- 11.4.1. Electro-Bioleaching of Sphalerite Flotation Concentrate -- 11.4.2. Bioleaching of Zinc Sulfide Concentrate -- 11.4.3. Bioleaching of Moore Cake and Sphalarite Tailings -- 11.5. Synthesis of Nanoparticles -- 11.6. Applications of Zinc-Based Value-Added Products/Nanomaterials -- 11.6.1. Hydro-Gel for Bio-applications -- 11.6.2. Sensors -- 11.6.3. Biomedical Applications -- 11.6.4. Antibacterial Properties -- 11.6.5. Zeolites in biomedical applications -- 11.6.6. Textiles -- 11.6.7. Prospects of Zinc Recovery from Tailings and Biosynthesis of Zinc-based Nano-materials -- 11.7. Conclusions and Future Directions -- References -- Chapter 12 Interaction Between Nanoparticles and Plants: Increasing Evidence of Phytotoxicity -- 12.1. Introduction -- 12.2. Plant-Nanoparticle Interactions -- 12.3. Effect of Nanoparticles On Plants -- 12.3.1. Monocot Plants -- 12.3.2. Dicot Plants.
12.4. Mechanisms of Nanoparticle-Induced Phytotoxicity.
Abstract:
Nanoparticles are the building blocks for nanotechnology; they are better built, long lasting, cleaner, safer, and smarter products for use across industries, including communications, medicine, transportation, agriculture and other industries. Controlled size, shape, composition, crystallinity, and structure-dependent properties govern the unique properties of nanotechnology. Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications explores both the basics of and advancements in nanoparticle biosynthesis. The text introduces the reader to a variety of microorganisms able to synthesize nanoparticles, provides an overview of the methodologies applied to biosynthesize nanoparticles for medical and commercial use, and gives an overview of regulations governing their use. Authored by leaders in the field, Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications bridges the gap between biology and technology, and is an invaluable resource for students and researchers alike.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View