Cover image for Extended Finite Element Method : Theory and Applications.
Extended Finite Element Method : Theory and Applications.
Title:
Extended Finite Element Method : Theory and Applications.
Author:
Khoei, Amir R.
ISBN:
9781118869697
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (602 pages)
Series:
Wiley Series in Computational Mechanics
Contents:
Title Page -- Copyright -- Contents -- Series Preface -- Preface -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 An Enriched Finite Element Method -- 1.3 A Review onX-FEM: Development and Applications -- 1.3.1 CouplingX-FEMwith the Level-Set Method -- 1.3.2 Linear Elastic Fracture Mechanics (LEFM) -- 1.3.3 Cohesive Fracture Mechanics -- 1.3.4 Composite Materials and Material Inhomogeneities -- 1.3.5 Plasticity, Damage, and Fatigue Problems -- 1.3.6 Shear Band Localization -- 1.3.7 Fluid-Structure Interaction -- 1.3.8 Fluid Flow in Fractured Porous Media -- 1.3.9 Fluid Flow and Fluid Mechanics Problems -- 1.3.10 Phase Transition and Solidification -- 1.3.11 Thermal and Thermo-Mechanical Problems -- 1.3.12 Plates and Shells -- 1.3.13 Contact Problems -- 1.3.14 Topology Optimization -- 1.3.15 Piezoelectric and Magneto-Electroelastic Problems -- 1.3.16 Multi-Scale Modeling -- Chapter 2 Extended Finite Element Formulation -- 2.1 Introduction -- 2.2 The Partition of Unity Finite Element Method -- 2.3 The Enrichment of Approximation Space -- 2.3.1 Intrinsic Enrichment -- 2.3.2 Extrinsic Enrichment -- 2.4 The Basis of X-FEM Approximation -- 2.4.1 The Signed Distance Function -- 2.4.2 The Heaviside Function -- 2.5 Blending Elements -- 2.6 Governing Equation of a Body with Discontinuity -- 2.6.1 The Divergence Theorem for Discontinuous Problems -- 2.6.2 The Weak form of Governing Equation -- 2.7 The X-FEM Discretization of Governing Equation -- 2.7.1 Numerical Implementation of X-FEM Formulation -- 2.7.2 Numerical Integration Algorithm -- 2.8 Application of X-FEM in Weak and Strong Discontinuities -- 2.8.1 Modeling an Elastic Bar with a Strong Discontinuity -- 2.8.2 Modeling an Elastic Bar with a Weak Discontinuity -- 2.8.3 Modeling an Elastic Plate with a Crack Interface at its Center.

2.8.4 Modeling an Elastic Plate with a Material Interface at its Center -- 2.9 Higher Order X-FEM -- 2.10 Implementation of X-FEM with Higher Order Elements -- 2.10.1 Higher Order X-FEM Modeling of a Plate with a Material Interface -- 2.10.2 Higher Order X-FEM Modeling of a Plate with a Curved Crack Interface -- Chapter 3 Enrichment Elements -- 3.1 Introduction -- 3.2 Tracking Moving Boundaries -- 3.3 Level Set Method -- 3.3.1 Numerical Implementation of LSM -- 3.3.2 Coupling the LSM with X-FEM -- 3.4 Fast Marching Method -- 3.4.1 Coupling the FMM with X-FEM -- 3.5 X-FEM Enrichment Functions -- 3.5.1 Bimaterials, Voids, and Inclusions -- 3.5.2 Strong Discontinuities and Crack Interfaces -- 3.5.3 Brittle Cracks -- 3.5.4 Cohesive Cracks -- 3.5.5 Plastic Fracture Mechanics -- 3.5.6 Multiple Cracks -- 3.5.7 Fracture in Bimaterial Problems -- 3.5.8 Polycrystalline Microstructure -- 3.5.9 Dislocations -- 3.5.10 Shear Band Localization -- Chapter 4 Blending Elements -- 4.1 Introduction -- 4.2 Convergence Analysis in the X-FEM -- 4.3 Ill-Conditioning in theX-FEM Method -- 4.3.1 One-Dimensional Problem with Material Interface -- 4.4 Blending Strategies in X-FEM -- 4.5 Enhanced Strain Method -- 4.5.1 An Enhanced Strain Blending Element for the Ramp Enrichment Function -- 4.5.2 An Enhanced Strain Blending Element for Asymptotic Enrichment Functions -- 4.6 The Hierarchical Method -- 4.6.1 A Hierarchical Blending Element for Discontinuous Gradient Enrichment -- 4.6.2 A Hierarchical Blending Element for Crack Tip Asymptotic Enrichments -- 4.7 The Cutoff Function Method -- 4.7.1 The Weighted Function Blending Method -- 4.7.2 A Variant of the Cutoff Function Method -- 4.8 A DG X-FEM Method -- 4.9 Implementation of Some OptimalX-FEM Type Methods -- 4.9.1 A Plate with a Circular Hole at Its Centre -- 4.9.2 A Plate with a Horizontal Material Interface.

4.9.3 The Fiber Reinforced Concrete in Uniaxial Tension -- 4.10 Pre-Conditioning Strategies inX-FEM -- 4.10.1 Béchetś Pre-Conditioning Scheme -- 4.10.2 Menk-Bordas Pre-Conditioning Scheme -- Chapter 5 Large X-FEM Deformation -- 5.1 Introduction -- 5.2 Large FE Deformation -- 5.3 The Lagrangian Large X-FEM Deformation Method -- 5.3.1 The Enrichment of Displacement Field -- 5.3.2 The Large X-FEM Deformation Formulation -- 5.3.3 Numerical Integration Scheme -- 5.4 Numerical Modeling of Large X-FEM Deformations -- 5.4.1 Modeling an Axial Bar with a Weak Discontinuity -- 5.4.2 Modeling a Plate with the Material Interface -- 5.5 Application of X-FEM in Large Deformation Problems -- 5.5.1 Die-Pressing with a Horizontal Material Interface -- 5.5.2 Die-Pressing with a Rigid Central Core -- 5.5.3 Closed-Die Pressing of a Shaped-Tablet Component -- 5.6 The Extended Arbitrary Lagrangian-Eulerian FEM -- 5.6.1 ALE Formulation -- 5.6.1.1 Kinematics -- 5.6.1.2 ALE Governing Equations -- 5.6.2 The Weak Form of ALE Formulation -- 5.6.3 The ALE FE Discretization -- 5.6.4 The Uncoupled ALE Solution -- 5.6.4.1 Material (Lagrangian) Phase -- 5.6.4.2 Smoothing Phase -- 5.6.4.3 Convection (Eulerian) Phase -- 5.6.5 The X-ALE-FEM Computational Algorithm -- 5.6.5.1 Level Set Update -- 5.6.5.2 Stress Update with Sub-Triangular Numerical Integration -- 5.6.5.3 Stress Update with Sub-Quadrilateral Numerical Integration -- 5.7 Application of the X-ALE-FEM Model -- 5.7.1 The Coining Test -- 5.7.2 A Plate in Tension -- Chapter 6 Contact Friction Modeling with X-FEM -- 6.1 Introduction -- 6.2 Continuum Model of Contact Friction -- 6.2.1 Contact Conditions: The Kuhn-Tucker Rule -- 6.2.2 Plasticity Theory of Friction -- 6.2.3 Continuum Tangent Matrix of Contact Problem -- 6.3 X-FEM Modeling of the Contact Problem -- 6.3.1 The Gauss-Green Theorem for Discontinuous Problems.

6.3.2 The Weak Form of Governing Equation for a Contact Problem -- 6.3.3 The Enrichment of Displacement Field -- 6.4 Modeling of Contact Constraints via the Penalty Method -- 6.4.1 Modeling of an Elastic Bar with a Discontinuity at Its Center -- 6.4.2 Modeling of an Elastic Plate with a Discontinuity at Its Center -- 6.5 Modeling of Contact Constraints via the Lagrange Multipliers Method -- 6.5.1 Modeling the Discontinuity in an Elastic Bar -- 6.5.2 Modeling the Discontinuity in an Elastic Plate -- 6.6 Modeling of Contact Constraints via the Augmented-Lagrange Multipliers Method -- 6.6.1 Modeling an Elastic Bar with a Discontinuity -- 6.6.2 Modeling an Elastic Plate with a Discontinuity -- 6.7 X-FEM Modeling of Large Sliding Contact Problems -- 6.7.1 Large Sliding with Horizontal Material Interfaces -- 6.8 Application of X-FEM Method in Frictional Contact Problems -- 6.8.1 An Elastic Square Plate with Horizontal Interface -- 6.8.1.1 Imposing the Unilateral Contact Constraint -- 6.8.1.2 Modeling the Frictional Stick-Slip Behavior -- 6.8.2 A Square Plate with an Inclined Crack -- 6.8.3 A Double-Clamped Beam with a Central Crack -- 6.8.4 A Rectangular Block with an S-Shaped Frictional Contact Interface -- Chapter 7 Linear Fracture Mechanics with theX-FEMTechnique -- 7.1 Introduction -- 7.2 The Basis of LEFM -- 7.2.1 Energy Balance in Crack Propagation -- 7.2.2 Displacement and Stress Fields at the Crack Tip Area -- 7.2.3 The SIFs -- 7.3 Governing Equations of a Cracked Body -- 7.3.1 The Enrichment of Displacement Field -- 7.3.2 Discretization of Governing Equations -- 7.4 Mixed-Mode Crack Propagation Criteria -- 7.4.1 The Maximum Circumferential Tensile Stress Criterion -- 7.4.2 The Minimum Strain Energy Density Criterion -- 7.4.3 The Maximum Energy Release Rate -- 7.5 Crack Growth Simulation withX-FEM -- 7.5.1 Numerical Integration Scheme.

7.5.2 Numerical Integration of ContourJ-Integral -- 7.6 Application ofX-FEMin Linear Fracture Mechanics -- 7.6.1 X-FEMModeling of aDCB -- 7.6.2 An Infinite Plate with a Finite Crack in Tension -- 7.6.3 An Infinite Plate with an Inclined Crack -- 7.6.4 A Plate with Two Holes and Multiple Cracks -- 7.7 Curved Crack Modeling withX-FEM -- 7.7.1 Modeling a Curved Center Crack in an Infinite Plate -- 7.8 X-FEM Modeling of a Bimaterial Interface Crack -- 7.8.1 The Interfacial Fracture Mechanics -- 7.8.2 The Enrichment of the Displacement Field -- 7.8.3 Modeling of a Center Crack in an Infinite Bimaterial Plate -- Chapter 8 Cohesive Crack Growth with the X-FEM Technique -- 8.1 Introduction -- 8.2 Governing Equations of a Cracked Body -- 8.2.1 The Enrichment of Displacement Field -- 8.2.2 Discretization of Governing Equations -- 8.3 Cohesive Crack Growth Based on the Stress Criterion -- 8.3.1 Cohesive Constitutive Law -- 8.3.2 Crack Growth Criterion and Crack Growth Direction -- 8.3.3 Numerical Integration Scheme -- 8.4 Cohesive Crack Growth Based on the SIF Criterion -- 8.4.1 The Enrichment of Displacement Field -- 8.4.2 The Condition for Smooth Crack Closing -- 8.4.3 Crack Growth Criterion and Crack Growth Direction -- 8.5 Cohesive Crack Growth Based on the Cohesive Segments Method -- 8.5.1 The Enrichment of Displacement Field -- 8.5.2 Cohesive Constitutive Law -- 8.5.3 Crack Growth Criterion and Its Direction for Continuous Crack Propagation -- 8.5.4 Crack Growth Criterion and Its Direction for Discontinuous Crack Propagation -- 8.5.5 Numerical Integration Scheme -- 8.6 Application of X-FEM Method in Cohesive Crack Growth -- 8.6.1 A Three-Point Bending Beam with Symmetric Edge Crack -- 8.6.2 A Plate with an Edge Crack under Impact Velocity -- 8.6.3 A Three-Point Bending Beam with an Eccentric Crack.

Chapter 9 Ductile Fracture Mechanics with a Damage-Plasticity Model in X-FEM.
Abstract:
Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: