Cover image for Indoor Radio Planning : A Practical Guide for 2G, 3G and 4G.
Indoor Radio Planning : A Practical Guide for 2G, 3G and 4G.
Title:
Indoor Radio Planning : A Practical Guide for 2G, 3G and 4G.
Author:
Tolstrup, Morten.
ISBN:
9781118913604
Personal Author:
Edition:
3rd ed.
Physical Description:
1 online resource (612 pages)
Contents:
Title Page -- Copyright Page -- Contents -- Foreword by Professor Simon Saunders -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Acknowledgments -- Chapter 1 Introduction -- Chapter 2 Overview of Cellular Systems -- 2.1 Mobile Telephony -- 2.1.1 Cellular Systems -- 2.1.2 Radio Transmission in General -- 2.1.3 The Cellular Concept -- 2.1.4 Digital Cellular Systems -- 2.2 Introduction to GSM (2G) -- 2.2.1 GSM (2G) -- 2.2.2 2G/GSM Radio Features -- 2.2.3 Mobility Management in GSM -- 2.2.4 GSM Signaling -- 2.2.5 GSM Network Architecture -- 2.3 Universal Mobile Telecommunication System/3G -- 2.3.1 The Most Important 3G/UMTS Radio Design Parameters -- 2.3.2 The 3G/UMTS Radio Features -- 2.3.3 3G/UMTS Noise Control -- 2.3.4 3G/UMTS Handovers -- 2.3.5 UMTS/3G Power Control -- 2.3.6 UMTS and Multipath Propagation -- 2.3.7 UMTS Signaling -- 2.3.8 The UMTS Network Elements -- 2.4 Introduction to HSPA -- 2.4.1 Introduction -- 2.4.2 Wi-Fi -- 2.4.3 Introduction to HSDPA -- 2.4.4 Indoor HSPA Coverage -- 2.4.5 Indoor HSPA Planning for Maximum Performance -- 2.4.6 HSDPA Coverage from the Macro Network -- 2.4.7 Passive DAS and HSPA -- 2.4.8 Short Introduction to HSPA+ -- 2.4.9 Conclusion -- 2.5 Modulation -- 2.5.1 Shannon's Formula -- 2.5.2 BPSK -- 2.5.3 QPSK - Quadrature Phase Shift Keying -- 2.5.4 Higher Order Modulation 16-64QAM -- 2.5.5 EVM Error Vector Magnitude -- 2.5.6 Adaptive Modulation, Planning for Highest Data Speed -- 2.6 Advanced Antenna Systems for 3G/4G -- 2.6.1 SISO/MIMO Systems -- 2.6.2 SISO, Single Input Single Output -- 2.6.3 SIMO, Single Input Multiple Output -- 2.6.4 MISO, Multiple Inputs Single Output -- 2.6.5 MIMO, Multiple Inputs Multiple Outputs -- 2.6.6 Planning for Optimum Data Speeds Using MIMO -- 2.7 Short Introduction to 4G/LTE -- 2.7.1 Motivation behind LTE and E-UTRAN.

2.7.2 Key Features of LTE E-UTRAN -- 2.7.3 System Architecture Evolution - SAE -- 2.7.4 EPS - Evolved Packet System -- 2.7.5 Evolved Packet Core Network - EPC -- 2.7.6 LTE Reference Points/Interfaces -- 2.7.7 The LTE RF Channel Bandwidth -- 2.7.8 OFDM - Orthogonal Frequency Division Multiplexing -- 2.7.9 OFDMA - Orthogonal Frequency Division Multiple Access -- 2.7.10 SC-FDMA - Single Carrier Frequency Division Multiple Access -- 2.7.11 LTE Slot Structure -- 2.7.12 User Scheduling -- 2.7.13 Downlink Reference Signals -- 2.7.14 The 4G/LTE Channel -- 2.7.15 LTE Communication and Control Channels -- 2.7.16 Radio Resource Management in LTE -- Chapter 3 Indoor Radio Planning -- 3.1 Why is In-building Coverage Important? -- 3.1.1 Commercial and Technical Evaluation -- 3.1.2 The Main Part of the Mobile Traffic is Indoors -- 3.1.3 Some 70-80% of Mobile Traffic is Inside Buildings -- 3.1.4 Indoor Solutions Can Make a Great Business Case -- 3.1.5 Business Evaluation -- 3.1.6 Coverage Levels/Cost Level -- 3.1.7 Evaluate the Value of the Proposed Solution -- 3.2 Indoor Coverage from the Macro Layer -- 3.2.1 More Revenue with Indoor Solutions -- 3.2.2 The Problem Reaching Indoor Mobile Users -- 3.3 The Indoor 3G/HSPA Challenge -- 3.3.1 3G Orthogonality Degradation -- 3.3.2 Power Load per User -- 3.3.3 Interference Control in the Building -- 3.3.4 The Soft Handover Load -- 3.3.5 3G/HSPA Indoor Coverage Conclusion -- 3.4 Common 3G/4G Rollout Mistakes -- 3.4.1 The Macro Mistake -- 3.4.2 Do Not Apply 2G Strategies -- 3.4.3 The Correct Way to Plan 3G/4G Indoor Coverage -- 3.5 The Basics of Indoor RF Planning -- 3.5.1 Isolation is the Key -- 3.5.2 Tinted Windows Will Help Isolation -- 3.5.3 The 'High-rise Problem' -- 3.5.4 Radio Service Quality -- 3.5.5 Indoor RF Design Levels -- 3.5.6 The Zone Planning Concept -- 3.6 RF Metrics Basics -- 3.6.1 Gain -- 3.6.2 Gain Factor.

3.6.3 Decibel (dB) -- 3.6.4 dBm -- 3.6.5 Equivalent Isotropic Radiated Power (EiRP) -- 3.6.6 Delays in the DAS -- 3.6.7 Offset of the Cell Size -- Chapter 4 Distributed Antenna Systems -- 4.1 What Type of Distributed Antenna System is Best? -- 4.1.1 Passive or Active DAS -- 4.1.2 Learn to Use all the Indoor Tools -- 4.1.3 Combine the Tools -- 4.2 Passive Components -- 4.2.1 General -- 4.2.2 Coax Cable -- 4.2.3 Splitters -- 4.2.4 Taps/Uneven Splitters -- 4.2.5 Attenuators -- 4.2.6 Dummy Loads or Terminators -- 4.2.7 Circulators -- 4.2.8 A 3 dB Coupler (90° Hybrid) -- 4.2.9 Power Load on Passive Components -- 4.2.10 Filters -- 4.3 The Passive DAS -- 4.3.1 Planning the Passive DAS -- 4.3.2 Main Points About Passive DAS -- 4.3.3 Applications for Passive DAS -- 4.4 Active DAS -- 4.4.1 Easy to Plan -- 4.4.2 Pure Active DAS for Large Buildings -- 4.4.3 Pure Active DAS for Small to Medium-size Buildings -- 4.4.4 Active Fiber DAS -- 4.5 Hybrid Active DAS Solutions -- 4.5.1 Data Performance on the Uplink -- 4.5.2 DL Antenna Power -- 4.5.3 Antenna Supervision -- 4.5.4 Installation Challenges -- 4.5.5 The Elements of the Hybrid Active DAS -- 4.6 Other Hybrid DAS Solutions -- 4.6.1 In-line BDA Solution -- 4.6.2 Combining Passive and Active Indoor DAS -- 4.6.3 Combining Indoor and Outdoor Coverage -- 4.7 Indoor DAS for MIMO Applications -- 4.7.1 Calculating the Ideal MIMO Antenna Distance Separation for Indoor DAS -- 4.7.2 Make Both MIMO Antennas 'Visible' for the Users -- 4.7.3 Passive DAS and MIMO -- 4.7.4 Pure Active DAS for MIMO -- 4.7.5 Hybrid DAS and MIMO -- 4.7.6 Upgrading Existing DAS to MIMO -- 4.8 Using Repeaters for Indoor DAS Coverage -- 4.8.1 Basic Repeater Terms -- 4.8.2 Repeater Types -- 4.8.3 Repeater Considerations in General -- 4.9 Repeaters for Rail Solutions -- 4.9.1 Repeater Principle on a Train -- 4.9.2 Onboard DAS Solutions.

4.9.3 Repeater Features for Mobile Rail Deployment -- 4.9.4 Practical Concerns with Repeaters on Rail -- 4.10 Active DAS Data -- 4.10.1 Gain and Delay -- 4.10.2 Power Per Carrier -- 4.10.3 Bandwidth, Ripple -- 4.10.4 The 1 dB Compression Point -- 4.10.5 IP3 Third-order Intercept Point -- 4.10.6 Harmonic Distortion, Inter-modulation -- 4.10.7 Spurious Emissions -- 4.10.8 Noise Figure -- 4.10.9 MTBF -- 4.10.10 Dynamic Range and Near-far Effect -- 4.11 Electromagnetic Radiation, EMR -- 4.11.1 ICNIRP EMR Guidelines -- 4.11.2 Mobiles are the Strongest Source of EMR -- 4.11.3 Indoor DAS will Provide Lower EMR Levels -- 4.12 Conclusion -- Chapter 5 Designing Indoor DAS Solutions -- 5.1 The Indoor Planning Procedure -- 5.1.1 Indoor Planning Process Flow -- 5.1.2 The RF Planning Part of the Process -- 5.1.3 The Site Survey -- 5.1.4 Time Frame for Implementing Indoor DAS -- 5.1.5 Post Implementation -- 5.2 The RF Design Process -- 5.2.1 The Role of the RF Planner -- 5.2.2 RF Measurements -- 5.2.3 The Initial RF Measurements -- 5.2.4 Measurements of Existing Coverage Level -- 5.2.5 RF Survey Measurement -- 5.2.6 Planning the Measurements -- 5.2.7 Post Implementation Measurements -- 5.2.8 Free Space Loss -- 5.2.9 The One Meter Test -- 5.3 Designing the Optimum Indoor Solution -- 5.3.1 Adapt the Design to Reality -- 5.3.2 Learn from the Mistakes of Others -- 5.3.3 Common Mistakes When Designing Indoor Solutions -- 5.3.4 Planning the Antenna Locations -- 5.3.5 The 'Corridor Effect' -- 5.3.6 Fire Cells Inside the Building -- 5.3.7 Indoor Antenna Performance -- 5.3.8 The 'Corner Office Problem' -- 5.3.9 Interleaving Antennas In-between Floors -- 5.3.10 Planning for Full Indoor Coverage -- 5.3.11 The Cost of Indoor Design Levels -- 5.4 Indoor Design Strategy -- 5.4.1 Hotspot Planning Inside Buildings -- 5.4.2 Special Design Considerations -- 5.4.3 The Design Flow.

5.4.4 Placing the Indoor Antennas -- 5.5 Handover Considerations Inside Buildings -- 5.5.1 Indoor 2G Handover Planning -- 5.5.2 Indoor 3G Handover Planning -- 5.5.3 Handover Zone Size -- 5.6 Elevator Coverage -- 5.6.1 Elevator Installation Challenges -- 5.6.2 The Most Common Coverage Elevator Solution -- 5.6.3 Antenna Inside the Shaft -- 5.6.4 Repeater in the Lift-car -- 5.6.5 DAS Antenna in the Lift-car -- 5.6.6 Passive Repeaters in Elevators -- 5.6.7 Real-life Example of a Passive Repeater in an Elevator -- 5.6.8 Control the Elevator HO Zone -- 5.6.9 Elevator HO Zone Size -- 5.6.10 Challenges with Elevator Repeaters for Large Shafts -- 5.7 Multioperator Systems -- 5.7.1 Multioperator DAS Solutions Compatibility -- 5.7.2 The Combiner System -- 5.7.3 Inter-modulation Distortion -- 5.7.4 How to Minimize PIM -- 5.7.5 IMD Products -- 5.8 Co-existence Issues for 2G/3G -- 5.8.1 Spurious Emissions -- 5.8.2 Combined DAS for 2G-900 and 3G -- 5.8.3 Combined DAS for 2G-1800 and 3G -- 5.9 Co-existence Issues for 3G/3G -- 5.9.1 Adjacent Channel Interference Power Ratio -- 5.9.2 The ACIR Problem with Indoor DAS -- 5.9.3 Solving the ACIR Problem Inside Buildings -- 5.10 Multioperator Requirements -- 5.10.1 Multioperator Agreement -- 5.10.2 Parties Involved in the Indoor Project -- 5.10.3 The Most Important Aspects to Cover in the MOA -- Chapter 6 Traffic Dimensioning -- 6.1 Erlang, the Traffic Measurement -- 6.1.1 What is One Erlang? -- 6.1.2 Call Blocking, Grade of Service -- 6.1.3 The Erlang B Table -- 6.1.4 User Types, User Traffic Profile -- 6.1.5 Save on Cost, Use the Erlang Table -- 6.1.6 When Not to Use Erlang -- 6.1.7 2G Radio Channels and Erlang -- 6.1.8 3G Channels and Erlang -- 6.1.9 Trunking Gain, Resource Sharing -- 6.1.10 Cell Configuration in Indoor Projects -- 6.1.11 Busy Hour and Return on Investment Calculations -- 6.1.12 Base Station Hotels.

6.2 Data Capacity.
Abstract:
Why is high performance indoor wireless service needed, and how is it best implemented? As the challenge of providing better service and higher data speeds and quality for mobile applications intensifies, ensuring adequate in-building and tunnel coverage and capacity is increasingly important. A unique, single-source reference on the theoretical and practical knowledge behind indoor and tunnel radio planning, this book provides a detailed overview of mobile networks systems, coverage and capacity solutions with 2G, 3G and 4G cellular system technologies as a backdrop.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: