
Oil and Gas Pipelines : Integrity and Safety Handbook.
Title:
Oil and Gas Pipelines : Integrity and Safety Handbook.
Author:
Revie, R. Winston.
ISBN:
9781119019190
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (855 pages)
Contents:
Oil and Gas Pipelines: Integrity and Safety Handbook -- Contents -- Preface -- Contributors -- Part I: Design -- 1 Pipeline Integrity Management Systems (PIMS) -- 1.1 Introduction -- 1.2 Lessons Learned and the Evolution of Pipeline Integrity -- 1.3 What Is a PIMS? -- 1.4 Regulatory Requirements -- 1.5 Core Structure and PIMS Elements -- 1.6 PIMS Function Map -- 1.7 Plan: Strategic and Operational -- 1.8 Do: Execute -- 1.9 Check: Assurance and Verification -- 1.10 Act: Management Review -- 1.11 Culture -- 1.12 Summary -- References -- 2 SCADA: Supervisory Control and Data Acquisition -- 2.1 Introduction -- 2.2 SCADA Computer Servers -- 2.3 SCADA Computer Workstations -- 2.4 Hierarchy -- 2.5 Runtime and Configuration Databases -- 2.6 Fault Tolerance -- 2.7 Redundancy -- 2.8 Alarm Rationalization, Management, and Analysis -- 2.9 Incident Review and Replay -- 2.10 Data Quality -- 2.11 Operator Logbook and Shift Handover -- 2.12 Training -- 2.13 SCADA User Permissions and AORs -- 2.14 Web Connection -- 2.15 SCADA Security -- 2.16 Human Factors Design in SCADA Systems -- 2.17 SCADA Standards -- 2.18 Pipeline Industry Applications -- 2.18.1 Leak Detection -- 2.18.2 Batch Tracking -- 2.18.3 Dynamic Pipeline Highlight -- 2.19 Communication Media -- 2.19.1 Cat5 Data Cable -- 2.19.2 Leased Line -- 2.19.3 Microwave -- 2.19.4 Dial-Up Line -- 2.19.5 Optical Fiber -- 2.19.6 Satellite -- 2.20 Communications Infrastructure -- 2.21 Communications Integrity -- 2.22 RTUs and PLCs -- 2.23 Database -- 2.24 User-Defined Programs -- 2.25 RTU/PLC Integrity -- References -- 3 Material Selection for Fracture Control -- 3.1 Overview of Fracture Control -- 3.2 Toughness Requirements: Initiation -- 3.3 Toughness Requirements: Propagation -- 3.4 Toughness Measurement -- 3.4.1 Toughness Measurement: Impact Tests -- 3.4.2 Toughness Measurement: J, CTOD, and CTOA.
3.5 Current Status -- References -- 4 Strain-Based Design of Pipelines -- 4.1 Introduction and Basic Concepts -- 4.1.1 Overview of Strain-Based Design -- 4.1.2 Deterministic versus Probabilistic Design Methods -- 4.1.3 Limit States -- 4.1.4 Displacement Control versus Load Control -- 4.1.5 Strain-Based Design Applications -- 4.2 Strain Demand -- 4.2.1 Overview -- 4.2.2 Challenging Environments and Strain Demand -- 4.2.3 Strain Levels and Analysis Considerations -- 4.3 Strain Capacity -- 4.3.1 Overview -- 4.3.2 Compressive Strain Capacity -- 4.3.3 Tensile Strain Capacity -- 4.4 Role of Full-Scale and Curved Wide Plate Testing -- 4.5 Summary -- References -- 5 Stress-Based Design of Pipelines -- 5.1 Introduction -- 5.2 Design Pressure -- 5.2.1 Maximum Allowable Operating Pressure -- 5.2.2 Maximum Operating Pressure -- 5.2.3 Surge Pressure -- 5.2.4 Test Pressure -- 5.3 Design Factor -- 5.4 Determination of Components of Stress -- 5.4.1 Hoop and Radial Stresses -- 5.4.2 Longitudinal Stress -- 5.4.3 Shear Stress -- 5.4.4 Equivalent Stress -- 5.4.5 Limits of Calculated Stress -- 5.5 Fatigue -- 5.5.1 Fatigue Life -- 5.5.2 Fatigue Limit -- 5.5.3 S-N Curve -- 5.6 Expansion and Flexibility -- 5.6.1 Flexibility and Stress Intensification Factors -- 5.7 Corrosion Allowance -- 5.7.1 Internal Corrosion Allowance -- 5.7.2 External Corrosion Allowance -- 5.7.3 Formulas -- 5.8 Pipeline Stiffness -- 5.8.1 Calculation of Pipeline Stiffness -- 5.8.2 Calculation of Induced Bending Moment -- 5.9 Pipeline Ovality -- 5.9.1 Brazier Effect -- 5.9.2 Ovality of a Buried Pipeline -- 5.10 Minimum Pipe Bend Radius -- 5.10.1 Minimum Pipe Bend Radius Calculation Based on Concrete -- 5.10.2 Minimum Pipe Bend Radius Calculation Based on Steel -- 5.10.3 Installation Condition -- 5.10.4 In-Service Condition -- 5.11 Pipeline Design for External Pressure -- 5.11.1 Buried Installation.
5.11.2 Above-Ground or Unburied Installation -- 5.12 Check for Hydrotest Conditions -- 5.13 Summary -- References -- 6 Spiral Welded Pipes for Shallow Offshore Applications -- 6.1 Introduction -- 6.2 Limitations of the Technology Feasibility -- 6.3 Challenges of Offshore Applications -- 6.3.1 Design Challenges -- 6.3.2 Stress Analysis Challenges -- 6.3.3 Materials and Manufacturing Challenges -- 6.4 Typical Pipe Properties -- 6.5 Technology Qualification -- 6.6 Additional Resources -- 6.7 Summary -- References -- 7 Residual Stress in Pipelines -- 7.1 Introduction -- 7.1.1 The Nature of Residual Stresses -- 7.1.2 Sources of Residual Stresses -- 7.2 The Influence of Residual Stresses on Performance -- 7.2.1 Fatigue -- 7.2.2 Stress Corrosion Cracking -- 7.2.3 Corrosion Fatigue -- 7.2.4 Effects of Cold Working and Microscopic Residual Stresses -- 7.3 Residual Stress Measurement -- 7.3.1 Center Hole Drilling Method -- 7.3.2 Ring Core Method -- 7.3.3 Diffraction Methods -- 7.3.4 Synchrotron X-Ray and Neutron Diffraction: Full Stress Tensor Determination -- 7.3.5 Magnetic Barkhausen Noise Method -- 7.4 Control and Alteration of Residual Stresses -- 7.4.1 Shot Peening -- 7.4.2 Roller or Ball Burnishing and Low Plasticity Burnishing -- 7.4.3 Laser Shock Peening -- 7.4.4 Thermal Stress Relief -- 7.5 Case Studies of the Effect of Residual Stress and Cold Work -- 7.5.1 Case Study 1: Restoration of the Fatigue Performance of Corrosion and Fretting Damaged 4340 Steel -- 7.5.2 Case Study 2: Mitigating SCC in Stainless Steel Weldments -- 7.5.3 Case Study 3: Mitigation of Sulfide Stress Cracking in P110 Oil Field Couplings -- 7.5.4 Case Study 4: Improving Corrosion Fatigue Performance and Damage Tolerance of 410 Stainless Steel -- 7.5.5 Case Study 5: Improving the Fatigue Performance of Downhole Tubular Components -- References.
8 Pipeline/Soil Interaction Modeling in Support of Pipeline Engineering Design and Integrity -- 8.1 Introduction -- 8.2 Site Characterization and Geotechnical Engineering in Relation to Pipeline System Response Analysis -- 8.2.1 Overview -- 8.2.2 Pipeline Routing -- 8.2.3 Geotechnical Investigations -- 8.3 Pipeline/Soil Interaction Analysis and Design -- 8.3.1 Overview -- 8.3.2 Physical Modeling -- 8.3.3 Computational Engineering Tools -- 8.3.4 Guidance on Best Practice to Enhance Computational Pipe/Soil Interaction Analysis -- 8.3.5 Emerging Research -- 8.3.6 Soil Constitutive Models -- 8.3.7 Advancing the State of Art into Engineering Practice through an Integrated Technology Framework -- Nomenclature -- Acknowledgments -- References -- 9 Human Factors -- 9.1 Introduction -- 9.2 What Is "Human Factors"? -- 9.3 Life Cycle Approach to Human Factors -- 9.3.1 Example Case Study -- 9.4 Human Factors and Decision Making -- 9.4.1 Information Receipt -- 9.4.2 Information Processing -- 9.5 Application of Human Factors Guidance -- 9.6 Heuristics and Biases in Decision Making -- 9.6.1 Satisficing Heuristic -- 9.6.2 Cue Primacy and Anchoring -- 9.6.3 Selective Attention -- 9.6.4 Availability Heuristic -- 9.6.5 Representativeness Heuristic -- 9.6.6 Cognitive Tunneling -- 9.6.7 Confirmation Bias -- 9.6.8 Framing Bias -- 9.6.9 Management of Decision-Making Challenges -- 9.7 Human Factors Contribution to Incidents in the Pipeline Industry -- 9.8 Human Factors Life Cycle Revisited -- 9.9 Summary -- References -- Bibliography -- Part II: Manufacture, Fabrication, and Construction -- 10 Microstructure and Texture Development in Pipeline Steels -- 10.1 Introduction -- 10.2 Short History of Pipeline Steel Development -- 10.2.1 Thermomechanically Controlled Processing of Pipeline Steels -- 10.3 Texture Control in Pipeline Steels -- 10.3.1 Fracture of Pipeline Steels.
10.3.2 Effect of Phase Transformation on the Texture Components -- 10.3.3 Effect of Austenite Recrystallization on Plate Texture -- 10.3.4 Effect of Austenite Pancaking on the Rolling Texture -- 10.3.5 Effect of Finish Rolling in the Intercritical Region -- 10.4 Effect of Texture on In-Plane Anisotropy -- 10.5 Summary -- Acknowledgments -- References -- 11 Pipe Manufacture-Introduction -- 11.1 Pipe Manufacturing Background -- 11.2 Current Trends in Line Pipe Manufacturing -- References -- 12 Pipe Manufacture-Longitudinal Submerged Arc Welded Large Diameter Pipe -- 12.1 Introduction -- 12.2 Manufacturing Process -- 12.3 Quality Control Procedures -- 12.4 Range of Grades and Dimensions -- 12.5 Typical Fields of Application -- 13 Pipe Manufacture-Spiral Pipe -- 13.1 Manufacturing Process -- 13.2 Quality Control Procedures -- 13.3 Range of Grades and Dimensions -- 13.4 Typical Fields of Applicability -- References -- 14 Pipe Manufacture-ERW Pipe -- 14.1 Introduction -- 14.2 Manufacturing Process -- 14.3 Quality Control Procedures -- 14.3.1 Welding Line -- 14.3.2 Finishing Line -- 14.3.3 Destructive Material Testing -- 14.4 Range of Grades and Dimensions -- 14.5 Typical Fields of Applicability -- References -- 15 Pipe Manufacture-Seamless Tube and Pipe -- 15.1 The Rolling Process -- 15.1.1 Introduction and History -- 15.1.2 Cross Rolling Technology -- 15.1.3 Pilger Rolling -- 15.1.4 Plug Rolling -- 15.1.5 Mandrel Rolling -- 15.1.6 Forging -- 15.1.7 Size Rolling and Stretch Reducing -- 15.2 Further Processing -- 15.2.1 Heat Treatment -- 15.2.2 Quality and In-Process Checks -- 15.2.3 Finishing Lines -- References -- 16 Major Standards for Line Pipe Manufacturing and Testing -- 16.1 API SPEC 5L/ISO 3183 -- 16.2 CSA Z662-11: Oil and Gas Pipeline Systems -- 16.3 DNV-OS-F101-2012: Submarine Pipeline Systems.
16.4 ISO 15156-1:2009: Petroleum and Natural Gas Industries- Materials for Use in H2S-Containing Environments in Oil and Gas Production.
Abstract:
A comprehensive and detailed reference guide on the integrity and safety of oil and gas pipelines, both onshore and offshore Covers a wide variety of topics, including design, pipe manufacture, pipeline welding, human factors, residual stresses, mechanical damage, fracture and corrosion, protection, inspection and monitoring, pipeline cleaning, direct assessment, repair, risk management, and abandonment Links modern and vintage practices to help integrity engineers better understand their system and apply up-to-date technology to older infrastructure Includes case histories with examples of solutions to complex problems related to pipeline integrity Includes chapters on stress-based and strain-based design, the latter being a novel type of design that has only recently been investigated by designer firms and regulators Provides information to help those who are responsible to establish procedures for ensuring pipeline integrity and safety.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View