
Data-Variant Kernel Analysis.
Title:
Data-Variant Kernel Analysis.
Author:
Motai, Yuichi.
ISBN:
9781119019336
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (248 pages)
Series:
Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control
Contents:
Cover -- Title Page -- Copyright -- Contents -- List of Figures -- List of Tables -- Preface -- Acknowledgments -- Chapter 1 Survey -- 1.1 Introduction of Kernel Analysis -- 1.2 Kernel Offline Learning -- 1.2.1 Choose the Appropriate Kernels -- 1.2.2 Adopt KA into the Traditionally Developed Machine Learning Techniques -- 1.2.3 Structured Database with Kernel -- 1.3 Distributed Database with Kernel -- 1.3.1 Multiple Database Representation -- 1.3.2 Kernel Selections Among Heterogeneous Multiple Databases -- 1.3.3 Multiple Database Representation KA Applications to Distributed Databases -- 1.4 Kernel Online Learning -- 1.4.1 Kernel-Based Online Learning Algorithms -- 1.4.2 Adopt "Online" KA Framework into the Traditionally Developed Machine Learning Techniques -- 1.4.3 Relationship Between Online Learning and Prediction Techniques -- 1.5 Prediction with Kernels -- 1.5.1 Linear Prediction -- 1.5.2 Kalman Filter -- 1.5.3 Finite-State Model -- 1.5.4 Autoregressive Moving Average Model -- 1.5.5 Comparison of Four Models -- 1.6 Future Direction and Conclusion -- References -- Chapter 2 Offline Kernel Analysis -- 2.1 Introduction -- 2.2 Kernel Feature Analysis -- 2.2.1 Kernel Basics -- 2.2.2 Kernel Principal Component Analysis (KPCA) -- 2.2.3 Accelerated Kernel Feature Analysis (AKFA) -- 2.2.4 Comparison of the Relevant Kernel Methods -- 2.3 Principal Composite Kernel Feature Analysis (PC-KFA) -- 2.3.1 Kernel Selections -- 2.3.2 Kernel Combinatory Optimization -- 2.4 Experimental Analysis -- 2.4.1 Cancer Image Datasets -- 2.4.2 Kernel Selection -- 2.4.3 Kernel Combination and Reconstruction -- 2.4.4 Kernel Combination and Classification -- 2.4.5 Comparisons of Other Composite Kernel Learning Studies -- 2.4.6 Computation Time -- 2.5 Conclusion -- References -- Chapter 3 Group Kernel Feature Analysis -- 3.1 Introduction.
3.2 Kernel Principal Component Analysis (KPCA) -- 3.3 Kernel Feature Analysis (KFA) for Distributed Databases -- 3.3.1 Extract Data-Dependent Kernels Using KFA -- 3.3.2 Decomposition of Database Through Data Association via Recursively Updating Kernel Matrices -- 3.4 Group Kernel Feature Analysis (GKFA) -- 3.4.1 Composite Kernel: Kernel Combinatory Optimization -- 3.4.2 Multiple Databases Using Composite Kernel -- 3.5 Experimental Results -- 3.5.1 Cancer Databases -- 3.5.2 Optimal Selection of Data-Dependent Kernels -- 3.5.3 Kernel Combinatory Optimization -- 3.5.4 Composite Kernel for Multiple Databases -- 3.5.5 K-NN Classification Evaluation with ROC -- 3.5.6 Comparison of Results with Other Studies on Colonography -- 3.5.7 Computational Speed and Scalability Evaluation of GKFA -- 3.6 Conclusions -- References -- Chapter 4 Online Kernel Analysis -- 4.1 Introduction -- 4.2 Kernel Basics: A Brief Review -- 4.2.1 Kernel Principal Component Analysis -- 4.2.2 Kernel Selection -- 4.3 Kernel Adaptation Analysis of PC-KFA -- 4.4 Heterogeneous vs. Homogeneous Data for Online PC-KFA -- 4.4.1 Updating the Gram Matrix of the Online Data -- 4.4.2 Composite Kernel for Online Data -- 4.5 Long-Term Sequential Trajectories with Self-Monitoring -- 4.5.1 Reevaluation of Large Online Data -- 4.5.2 Validation of Decomposing Online Data into Small Chunks -- 4.6 Experimental Results -- 4.6.1 Cancer Datasets -- 4.6.2 Selection of Optimum Kernel and Composite Kernel for Offline Data -- 4.6.3 Selection of Optimum Kernel and Composite Kernel for the New Online Sequences -- 4.6.4 Classification of Heterogeneous Versus Homogeneous Data -- 4.6.5 Online Learning Evaluation of Long-term Sequence -- 4.6.6 Evaluation of Computational Time -- 4.7 Conclusions -- References -- Chapter 5 Cloud Kernel Analysis -- 5.1 Introduction -- 5.2 Cloud Environments.
5.2.1 Server Specifications of Cloud Platforms -- 5.2.2 Cloud Framework of KPCA for AMD -- 5.3 AMD for Cloud Colonography -- 5.3.1 AMD Concept -- 5.3.2 Data Configuration of AMD -- 5.3.3 Implementation of AMD for Two Cloud Cases -- 5.3.4 Parallelization of AMD -- 5.4 Classification Evaluation of Cloud Colonography -- 5.4.1 Databases with Classification Criteria -- 5.4.2 Classification Results -- 5.5 Cloud Computing Performance -- 5.5.1 Cloud Computing Setting with Cancer Databases -- 5.5.2 Computation Time -- 5.5.3 Memory Usage -- 5.5.4 Running Cost -- 5.5.5 Parallelization -- 5.6 Conclusions -- References -- Chapter 6 Predictive Kernel Analysis -- 6.1 Introduction -- 6.2 Kernel Basics -- 6.2.1 KPCA and AKFA -- 6.3 Stationary Data Training -- 6.3.1 Kernel Selection -- 6.3.2 Composite Kernel: Kernel Combinatory Optimization -- 6.4 Longitudinal Nonstationary Data with Anomaly/Normal Detection -- 6.4.1 Updating the Gram Matrix Based on Nonstationary Longitudinal Data -- 6.4.2 Composite Kernel for Nonstationary Data -- 6.5 Longitudinal Sequential Trajectories for Anomaly Detection and Prediction -- 6.5.1 Anomaly Detection of Nonstationary Small Chunks Datasets -- 6.5.2 Anomaly Prediction of Long-Time Sequential Trajectories -- 6.6 Classification Results -- 6.6.1 Cancer Datasets -- 6.6.2 Selection of Optimum Kernel and Composite Kernel for Stationary Data -- 6.6.3 Comparisons with Other Kernel Learning Methods -- 6.6.4 Anomaly Detection for the Nonstationary Data -- 6.7 Longitudinal Prediction Results -- 6.7.1 Large Nonstationary Sequential dataset for Anomaly Detection -- 6.7.2 Time Horizontal Prediction for Risk Factor Analysis of Anomaly Long-Time Sequential Trajectories -- 6.7.3 Computational Time for Complexity Evaluation -- 6.8 Conclusions -- References -- Chapter 7 Conclusion -- Appendix A.
Appendix B Representative Matlab codes -- B.1 Accelerated Kernel Feature Analysis -- B.2 Experimental Evaluations -- B.3 Group Kernel Analysis -- B.4 Online Composite Kernel Analysis -- B.5 Online Data Sequences Contol -- B.6 Alignment Factor -- B.7 Cloud Kernel Analysis -- B.8 Plot Computation Time -- B.9 Parallelization -- Index -- Wiley Series on Adaptive and Cognitive Dynamic Systems -- EULA.
Abstract:
Describes and discusses the variants of kernel analysis methods for data types that have been intensely studied in recent years This book covers kernel analysis topics ranging from the fundamental theory of kernel functions to its applications. The book surveys the current status, popular trends, and developments in kernel analysis studies. The author discusses multiple kernel learning algorithms and how to choose the appropriate kernels during the learning phase. Data-Variant Kernel Analysis is a new pattern analysis framework for different types of data configurations. The chapters include data formations of offline, distributed, online, cloud, and longitudinal data, used for kernel analysis to classify and predict future state. Data-Variant Kernel Analysis: Surveys the kernel analysis in the traditionally developed machine learning techniques, such as Neural Networks (NN), Support Vector Machines (SVM), and Principal Component Analysis (PCA) Develops group kernel analysis with the distributed databases to compare speed and memory usages Explores the possibility of real-time processes by synthesizing offline and online databases Applies the assembled databases to compare cloud computing environments Examines the prediction of longitudinal data with time-sequential configurations Data-Variant Kernel Analysis is a detailed reference for graduate students as well as electrical and computer engineers interested in pattern analysis and its application in colon cancer detection.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View