
Large Area and Flexible Electronics.
Title:
Large Area and Flexible Electronics.
Author:
Caironi, Mario.
ISBN:
9783527680009
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (588 pages)
Contents:
Large Area and Flexible Electronics -- Contents -- List of Contributors -- Overview -- Book Structure and Aim -- Acknowledgments -- References -- Part I: Materials -- Chapter 1 Polymeric and Small-Molecule Semiconductors for Organic Field-Effect Transistors -- 1.1 Introduction -- 1.2 Organic Semiconductor Structural Design -- 1.3 Thin-Film Transistor Applications -- 1.4 p-Channel Semiconductors -- 1.4.1 Polymers -- 1.4.2 Small Molecules -- 1.5 n-Channel Semiconductors -- 1.5.1 Polymers -- 1.5.2 Small Molecules -- 1.6 Ambipolar Semiconductors -- 1.6.1 Polymers -- 1.6.2 Small Molecules -- 1.7 Conclusions -- References -- Chapter 2 Metal-Oxide Thin-Film Transistors for Flexible Electronics -- 2.1 Introduction -- 2.2 Metal-Oxide TFTs -- 2.2.1 Advantages and Applications -- 2.2.2 Vacuum Deposition -- 2.2.3 Solution Processing -- 2.3 Solution-Processed MO Thin Films -- 2.3.1 Nanoparticle-Based Process -- 2.3.2 Sol-Gel-Based Process -- 2.3.3 Hybrid Type -- 2.4 Low-Temperature-Processed MO TFTs for Flexible Electronics -- 2.4.1 Low-Temperature-Processed MO TFTs -- 2.4.1.1 Annealing Environment -- 2.4.1.2 Ink Formulation -- 2.4.1.3 Alternate Annealing Process -- 2.4.2 Photochemical Activation of Oxide Semiconductors -- 2.5 Summary -- References -- Chapter 3 Carbon Nanotube Thin-Film Transistors -- 3.1 Introduction -- 3.2 Individual SWCNTs and SWCNT Thin Films -- 3.3 Chemical Vapor Deposition Growth of SWCNT TFTs -- 3.4 Solution-Based Methods for SWCNT TFTs -- 3.5 Inkjet Printing of Flexible SWCNT TFTs -- 3.6 Fabrication Schemes for High-Performance Inkjet-Printed SWCNT TFTs -- 3.7 Inkjet Printing of SWCNT CMOS Inverters -- 3.8 Inkjet Printing of Aligned SWCNT Films -- 3.9 Conclusion -- References.
Chapter 4 Organic Single-Crystalline Semiconductors for Flexible Electronics Applications -- 4.1 Introduction -- 4.2 Electronic and Structural Properties of Single Crystals -- 4.2.1 Intrinsic Transport Properties -- 4.2.2 Crystal Dimensionality -- 4.3 Crystallization Techniques -- 4.3.1 Growth from Vapor Phase -- 4.3.2 Growth from Solution -- 4.4 Single-Crystal Flexible Electronic Devices -- 4.4.1 Fundamental Mechanics for Flexible Electronics -- 4.4.2 Mechanical Versatility of Organic Single Crystals -- 4.4.3 Importance of Mechanical Properties Knowledge -- 4.4.4 The Elastic Constants of Rubrene Single Crystals -- 4.5 Strategies for Flexible Organic Single-Crystal Device Fabrication -- 4.5.1 Discrete Ultrathin Single-Crystal Transistor -- 4.5.2 Transistor Arrays Based on Micropatterned Single Crystals -- 4.5.3 Flexible Single-Crystal Nanowire Devices -- 4.6 Conclusions -- Acknowledgments -- References -- Chapter 5 Solution-Processable Quantum Dots -- 5.1 Introduction -- 5.2 Optimization of the Colloidal Synthesis of Quantum Dots by Selection of Suitable Solvents, Ligands, and Precursors -- 5.3 Large-Scale Synthesis of Quantum Dots -- 5.4 Surface Chemistry of Quantum Dots -- 5.5 Post-Synthetic Chemical Modification of Nanocrystals -- 5.6 Conclusions and Outlook -- References -- Chapter 6 Inorganic Semiconductor Nanomaterials for Flexible Electronics -- 6.1 Introduction -- 6.2 Characteristics and Synthesis of Inorganic Semiconducting NMs -- 6.2.1 Characteristics of Inorganic NMs -- 6.2.1.1 Mechanical Properties of Inorganic NMs in Bending and Stretching -- 6.2.1.2 Optoelectrical Properties -- 6.2.2 Fabrication of Inorganic NMs for Flexible Electronics -- 6.2.2.1 Selective Etching -- 6.2.2.2 Anisotropic Etching -- 6.2.2.3 Mass Production of Inorganic NMs -- 6.2.2.4 Transfer Process.
6.3 Applications in Flexible Electronics -- 6.3.1 Flexible Electronics -- 6.3.1.1 Flexible Solar Cell -- 6.3.1.2 Flexible Memory -- 6.3.1.3 Flexible High-Frequency Transistor -- 6.3.1.4 Foldable Transistor Using Ultrathin Si NMs -- 6.3.2 Conformal Device -- 6.3.2.1 Conformal Biomonitoring System -- 6.3.3 Stretchable Electronics -- 6.3.3.1 Stretchable Logic Circuit -- 6.3.3.2 Stretchable Light-Emitting Diode -- 6.3.3.3 Photodetector -- 6.3.4 Utilizing Deformation of NMs -- 6.3.4.1 Nanogenerator and Actuator -- 6.3.4.2 RF Device Using Strained NMs -- 6.3.5 Transparent Transistor -- 6.4 Concluding Remarks -- References -- Chapter 7 Dielectric Materials for Large-Area and Flexible Electronics -- 7.1 Introduction -- 7.2 General Polymer Dielectrics -- 7.3 Cross-Linked Polymer Dielectrics -- 7.4 High-k Polymer Dielectrics -- 7.5 Electrolyte Gate Dielectrics -- 7.6 Self-Assembled Molecular Layer Dielectrics -- 7.7 Hybrid Dielectrics -- 7.7.1 Organic-Inorganic Laminated Bilayers/Multilayers -- 7.7.2 Organic Polymeric/Inorganic Nanoparticle and Nanocomposites -- 7.7.3 Hybrid Dielectrics Based on Organosiloxane and Organozirconia -- 7.8 Sol-Gel High-k Inorganic Dielectrics -- 7.9 Summary and Outlook -- References -- Chapter 8 Electrolyte-Gating Organic Thin Film Transistors -- 8.1 Introduction -- 8.2 Electrolyte-Gated OTFT Operation Mechanisms -- 8.3 Electrolyte Materials -- 8.4 OTFTs Gated with Electrolyte Dielectrics -- 8.5 Circuits Based on Electrolyte-Gated OTFTs -- 8.6 Conclusions -- References -- Chapter 9 Vapor Barrier Films for Flexible Electronics -- 9.1 Introduction -- 9.2 Thin-Film Permeation Barrier Layers -- 9.3 Permeation through Inorganic Thin Films -- 9.4 Time-Resolved Measurements on Barrier Layers -- 9.5 Mechanical Limitations of Inorganic Films.
9.6 Mechanics of Films on Flexible Substrates -- 9.7 Summary -- References -- Chapter 10 Latest Advances in Substrates for Flexible Electronics -- 10.1 Introduction -- 10.2 Factors Influencing Film Choice -- 10.2.1 Application Area -- 10.2.2 Physical Form/Manufacturing Process -- 10.3 Film Property Set -- 10.3.1 Polymer Type -- 10.3.2 Optical Clarity -- 10.3.3 Birefringence -- 10.3.4 The Effect of Thermal Stress on Dimensional Reproducibility -- 10.3.5 Cyclic Oligomers -- 10.3.6 Solvent and Moisture Resistance -- 10.3.7 The Effect of Mechanical Stress on Dimensional Reproducibility -- 10.3.8 Surface Quality -- 10.3.8.1 Inherent Surface Smoothness -- 10.3.8.2 Surface Cleanliness -- 10.4 Summary of Key Properties of Base Substrates -- 10.5 Planarizing Coatings -- 10.6 Examples of Film in Use -- 10.7 Concluding Remarks -- Acknowledgments -- References -- Part II: Devices and Applications -- Chapter 11 Inkjet Printing Process for Large Area Electronics -- 11.1 Introduction -- 11.2 Dynamics of Jet Formation -- 11.3 Ink Rheology: Non-Newtonian Liquids -- 11.4 Dynamics of Drop Impact and Spreading -- 11.5 Applications of Inkjet Printing for Large-Area Electronics -- 11.5.1 Light-Emitting Diodes -- 11.5.2 Thin-Film Transistors -- 11.5.3 Solar Cells -- 11.6 Summary -- References -- Chapter 12 Inkjet-Printed Electronic Circuits Based on Organic Semiconductors -- 12.1 Printed Organic Electronics -- 12.1.1 Printed Electronic Devices -- 12.1.2 Inkjet Printing Technology -- 12.2 CMOS Technology -- 12.2.1 CMOS Inverters -- 12.2.2 Ring Oscillators -- 12.3 High-Speed Organic CMOS Circuits -- 12.3.1 High-Mobility Printable Semiconductors -- 12.3.2 Downscaling of Channel Length -- 12.3.3 Reducing Contact Resistance -- 12.3.4 Reducing Parasitic Overlap Capacitance -- 12.4 Conclusions -- References.
Chapter 13 Large-Area, Printed Organic Circuits for Ambient Electronics -- 13.1 Introduction -- 13.2 Manufacturing Process and Electrical Characteristics -- 13.2.1 Materials and Methods -- 13.2.2 Organic Transistors Manufactured Using Printing Technologies -- 13.2.2.1 Manufacturing Process for DNTT Transistors -- 13.2.2.2 Electrical Performance of DNTT Transistors -- 13.2.2.3 Manufacturing Process for All-Printed Transistors -- 13.2.2.4 Electrical Performance of All-Printed Transistors -- 13.2.3 Mechanical Characteristics -- 13.2.4 Inverter Circuits and Ring Oscillator Using Printed Transistors -- 13.2.5 Printed Organic Floating-Gate Transistors -- 13.2.5.1 Manufacturing Process -- 13.2.5.2 Electrical Performance -- 13.3 Demonstration -- 13.3.1 Organic Active-Matrix LED Pixel Circuits -- 13.3.2 Large-Area Flexible Pressure Sensor Sheet -- 13.3.3 Intelligent Sensor Catheter for Medical Diagnosis -- 13.4 Future Prospects -- Acknowledgments -- References -- Chapter 14 Polymer and Organic Nonvolatile Memory Devices -- 14.1 Introduction -- 14.2 Resistive Switching Memories -- 14.2.1 Fundamentals of Resistive Switching Principles -- 14.2.2 Mechanisms of Resistive Switching -- 14.2.2.1 Filamentary Conduction -- 14.2.2.2 Space Charge and Traps -- 14.2.2.3 Charge Transfer -- 14.2.2.4 Ionic Conduction -- 14.2.3 The Role of π-Conjugated Material in Switching Process -- 14.2.4 Recent Flexible RRAM Based on Organic-Inorganic Bistable Materials -- 14.3 Charge Storage in Transistor Gate Dielectric -- 14.3.1 Operation of Charge-Storage OFET Memory Devices -- 14.3.2 Charge Storage in Polymer Electrets -- 14.3.3 Nanoparticle-Embedded Gate Dielectrics -- 14.4 Polymer Ferroelectric Devices -- 14.4.1 Materials -- 14.4.2 Principles of Memory Operation -- 14.4.2.1 Capacitor -- 14.4.2.2 Field-Effect Transistor -- 14.5 Conclusions -- References.
Chapter 15 Flexible Displays.
Abstract:
From materials to applications, this ready reference covers the entire value chain from fundamentals via processing right up to devices, presenting different approaches to large-area electronics, thus enabling readers to compare materials, properties and performance. Divided into two parts, the first focuses on the materials used for the electronic functionality, covering organic and inorganic semiconductors, including vacuum and solution-processed metal-oxide semiconductors, nanomembranes and nanocrystals, as well as conductors and insulators. The second part reviews the devices and applications of large-area electronics, including flexible and ultra-high-resolution displays, light-emitting transistors, organic and inorganic photovoltaics, large-area imagers and sensors, non-volatile memories and radio-frequency identification tags. With its academic and industrial viewpoints, this volume provides in-depth knowledge for experienced researchers while also serving as a first-stop resource for those entering the field.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View