Cover image for Introduction to Modern Physics.
Introduction to Modern Physics.
Title:
Introduction to Modern Physics.
Author:
Singh, R.B.
ISBN:
9788122429220
Personal Author:
Physical Description:
1 online resource (636 pages)
Contents:
Cover -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- Unit I Special Theory of Relativity -- Chapter 1 The Special Theory of Relativity -- 1.1 Introduction -- 1.2 Classical Principle of Relativity : Galilean Transformation Equations -- 1.3 Michelson-Morley Experiment (1881) -- 1.4 Einstein's Special Theory of Relativity -- 1.5 Lorentz Transformations -- 1.6 Velocity Transformation -- 1.7 Simultaneity -- 1.8 Lorentz Contraction -- 1.9 Time Dilation -- 1.10 Experimental Verification of Length Contraction and Time Dilation -- 1.11 Interval -- 1.12 Doppler's Effect -- 1.13 Relativistic Mechanics -- 1.14 Relativistic Expression for Momentum: Variation of Mass With Velocity -- 1.15 The Fundamental Law of Relativistic Dynamcis -- 1.16 Mass-Energy Equivalence -- 1.17 Relationship Between Energy and Momentum -- 1.18 Momentum of Photon -- 1.19 Transformation of Momentum and Energy -- 1.20 Verification of Mass-Energy Equivalence Formula -- 1.21 Nuclear Binding Energy -- Solved Examples -- Questions -- Problems -- Unit II Quantum Mechanics -- Chapter 1 Origin of Quantum Concepts -- 1.1 Introduction -- 1.2 Black Body Radiation -- 1.3 Spectral Distribution of Energy in Thermal Radiation -- 1.4 Classical Theories of Black Body Radiation -- 1.5 Planck's Radiation Law -- 1.6 Deduction of Stefan's Law From Planck's Law -- 1.7 Deduction of Wien's Displacement Law -- Solved Examples -- 1.8 Photoelectric Effect -- Solved Examples -- 1.9 Compton's Effect -- Solved Examples -- 1.10 Bremsstrahlung -- 1.11 Raman Effect -- Solved Examples -- 1.12 The Dual Nature of Radiation -- Questions and Problems -- Chapter 2 Wave Nature of Material Particles -- 2.1 Introduction -- 2.2 de Broglie Hypothesis -- 2.3 Experimental Verification of de Broglie Hypothesis -- 2.4 Wave Behavior of Macroscopic Particles -- 2.5 Historical Perspective.

2.6 The Wave Packet -- 2.7 Particle Velocity and Group Velocity -- 2.8 Heisenberg's Uncertainty Principle or the Principle of Indeterminacy -- Solved Examples -- Questions and Problems -- Chapter 3 Schrodinger Equation -- 3.1 Introduction -- 3.2 Schrodinger Equation -- 3.3 Physical Significance of Wave Function -- 3.4 Interpretation of Wave Function in Terms of Probability Current Density -- 3.5 Schrodinger Equation in Spherical Polar Coordinates -- 3.6 Operators in Qunatum Mechanics -- 3.7 Eigen Value Equation -- 3.8 Orthogonality of Eigen Functions -- 3.9 Compatible and Incompatible Observables -- 3.10 Commutator -- 3.11 Commutation Relations for Ladder Operators -- 3.12 Expectation Value -- 3.13 Ehrenfest Theorem -- 3.14 Superposition of States (Expansion Theorem) -- 3.15 Adjoint of an Operator -- 3.16 Self-Adjoint or Hermitian Operator -- 3.17 Eigen Functions of Hermitian Operator Belonging to Different Eigen Values are Mutually Orthogonal -- 3.18 Eigen Value of a Self-Adjoint (Hermitian Operator) is Real -- Solved Examples -- Questions and Problems -- Chapter 4 Potential Barrier Problems -- 4.1 Potential Step or Step Barrier -- 4.2 Potential Barrier (Tunnel Effect) -- 4.3 Particle in a One -Dimensional Potential Well of Finite Depth -- 4.4 Theory of Alpha Decay -- Questions -- Chapter 5 Eigen Values of L2 and Lz Axiomatic: Formulation of Quantum Mechanics -- 5.1 Eigen Values and Eigen Functions of L2 and Lz -- 5.2 Axiomatic Formulation of Quantum Mechanics -- 5.3 Dirac Formalism of Quantum Mechanics -- 5.4 General Definition of Angular Momentum -- 5.5 Parity -- Questions and Problems -- Chapter 6 Particle in a Box -- 6.1 Particle in an Infinitely Deep Potential Well (Box) -- 6.2 Particle in a Two Dimensional Potential Well -- 6.3 Particle in a Three Dimensional Potential Well -- 6.4 Degeneracy -- 6.5 Density of States.

6.6 Spherically Symmetric Potential Well -- Solved Examples -- Questions and Problems -- Chapter 7 Harmonic Oscillator -- 7.1 Introduction -- Questions and Problems -- Chapter 8 Rigid Rotator -- 8.1 Introduction -- Questions and Problems -- Chapter 9 Particle in a Central Force Field -- 9.1 Reduction of Two-Body Problem in Two Equivalent One-Body Problem in a Central Force -- 9.2 Hydrogen Atom -- 9.3 Most Probable Distance of Electron From Nucleus -- 9.4 Degeneracy of Hydrogen Energy Levels -- 9.5 Properties of Hydrogen Atom Wave Functions -- Solved Examples -- Questions and Problems -- Unit III Statistical Mechanics -- Chapter 1 Preliminary Concepts -- 1.1 Introduction -- 1.2 Maxwell-Boltzmann (M-B) Statistics -- 1.3 Bose-Einstein (B-E) Statistics -- 1.4 Fermi-Dirac (F-D) Statistics -- 1.5 Specification of the State of a System -- 1.6 Density of States -- 1.7 N-Particle System -- 1.8 Macroscopic (Macro) State -- 1.9 Microscopic (Micro) State -- Solved Examples -- Chapter 2 Phase Space -- 2.1 Introduction -- 2.2 Density of States in Phase Space -- 2.3 Number of Quantum States of an N-Particle System -- Chapter 3 Ensemble Formulation of Statistical Mechanics -- 3.1 Ensemble -- 3.2 Density of Distribution (Phase Points) In y-Space -- 3.3 Principle of Equal a Priori Probability -- 3.4 Ergodic Hypothesis -- 3.5 Liouville's Theorem -- 3.6 Statistical Equilibrium -- Thermodynamic Functions -- 3.7 Entropy -- 3.8 Free Energy -- 3.9 Ensemble Formulation of Statistical Mechanics -- 3.10 Microcanonical Ensemble -- 3.11 Classical Ideal Gas in Microcanonical Ensemble Formulation -- 3.12 Canonical Ensemble and Canonical Distribution -- 3.13 The Equipartition Theorem -- 3.14 Entropy in Terms of Probability -- 3.15 Entropy in Terms of Single Particle Partition Function Z1 -- Chapter 4 Distribution Functions -- 4.1 Maxwell-Boltzmann Distribution.

4.2 Heat Capacity of An Ideal Gas -- 4.3 Maxwell's Speed Distribution Function -- 4.4 Fermi-Dirac Statistics -- 4.5 Bose-Einstein Statistics -- Chapter 5 Applications of Quantum Statistics -- Fermi-Dirac Statistics -- 5.1 Sommerfeld's Free Electron Theory of Metals -- 5.2 Electronic Heat Capacity -- 5.3 Thermionic Emission (Richardson-Dushmann Equation) -- 5.4 An Ideal Bose Gas -- 5.5 Degeneration of Ideal Bose Gas -- 5.6 Black Body Radiation: Planck's Radiation Law -- 5.7 Validity Criterion for Classical Regime -- 5.8 Comparison of M-B, B-E And F-D Statistics -- Chapter 6 Partition Function -- 6.1 Canonical Partition Function -- 6.2 Classical Partition Function of a System Containing N Distinguishable Particles -- 6.3 Thermodynamic Functions of Monoatomic Gas -- 6.4 Gibbs Paradox -- 6.5 Indistinguishability of Particles and Symmetry of Wave Functions -- 6.6 Partition Function for Indistinguishable Particles -- 6.7 Molecular Partition Function -- 6.8 Partition Function and Thermodynamic Properties of Monoatomic Ideal Gas -- 6.9 Thermodynamic Functions in Terms of Partition Function -- 6.10 Rotational Partition Function -- 6.11 Vibrational Partition Function -- 6.12 Grand Canonical Ensemble and Grand Partition Function -- 6.13 Statistical Properties of a Thermodynamic System in Terms of Grand Partition Function -- 6.14 Grand Potential -- 6.15 Ideal Gas From Grand Partition Function -- 6.16 Occupation Number of an Energy State From Grand Partition Function Fermi-Dirac-and Bose-Einstein Distribution -- Chapter 7 Application of Partition Function -- 7.1 Specific Heat of Solids -- 7.2 Phonon Concept -- 7.3 Planck's Radiation Law: Partition Function Method -- Questions and Problems -- Appendix-A -- Unit IV Atomic Spectra -- Chapter 1 Atomic Spectra-I -- 1.1 Introduction -- 1.2 Thomson's Model -- 1.3 Rutherford Atomic Model -- 1.4 Atomic (Line) Spectrum.

1.5 Bohr's Theory of Hydrogenic Atoms (H,HE+,Li++) -- 1.6 Origin of Spectral Series -- 1.7 Correction for Nuclear Motion -- 1.8 Determination of Electron-Proton Mass Ratio (m/MH) -- 1.9 Isotopic Shift: Discovery of Deuterium -- 1.10 Atomic Excitation -- 1.11 Franck-Hertz Experiment -- 1.12 Bohr's Correspondence Principle -- 1.13 Sommerfeld Theory of Hydrogen Atom -- 1.14 Sommerfeld's Relativistic Theory of Hydrogen Atom -- Solved Examples -- Questions and Problems -- Chapter 2 Atomic Spectra-II -- 2.1 Electron Spin -- 2.2 Quantum Numbers and the State of An Electron in an Atom -- 2.3 Electronic Configuration of Atoms -- 2.4 Magnetic Moment of Atom -- 2.5 Larmor Theorem -- 2.6 The Magnetic Moment and Lande g-Factor for one Valence Electron Atom -- 2.7 Vector Model of Atom -- 2.8 Atomic State or Spectral Term Symbol -- 2.9 Ground State of Atom With One Valence Electron (Hydrogen and Alkali Atoms) -- 2.10 Spectral Terms of Two Valence Electrons Systems (Helium and Alkaline-Earths) -- 2.11 Hund's Rule for Determining the Ground State of an Atom -- 2.12 Lande g-Factor in L-S Coupling -- 2.13 Lande g-Factor in J-J Coupling -- 2.14 Energy of an Atom in Magnetic Field -- 2.15 Stern and Gerlach Experiment (Space Quantization): Experimental Confirmation for Electron Spin Concept -- 2.16 Spin Orbit Interaction Energy -- 2.17 Fine Structure of Energy Levels in Hydrogen Atom -- 2.18 Fine Structure of H Line -- 2.19 FIne Structure of Sodium D Lines -- 2.20 Interaction Energy in L-S Coupling in Atom With Two Valence Electrons -- 2.21 Interaction Energy in J-J Coupling in Atom With Two Valence Electrons -- 2.22 Lande Interval Rule -- Solved Examples -- Questions and Problems -- Chapter 3 Atomic Spectra-III -- 3.1 Spectra of Alkali Metals -- 3.2 Energy Levels of Alkali Metals -- 3.3 Spectral Series of Alkali Atoms -- 3.4 Salient Features of Spectra of Alkali Atoms.

3.5 Electron Spin and Fine Structure of Spectral Lines.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: