Cover image for Advances in Nanotechnology. Volume 2.
Advances in Nanotechnology. Volume 2.
Title:
Advances in Nanotechnology. Volume 2.
Author:
Bartul , Zacharie.
ISBN:
9781617617508
Personal Author:
Physical Description:
1 online resource (486 pages)
Series:
Advances in Nanotechnology ; v.2

Advances in Nanotechnology
Contents:
ADVANCES IN NANOTECHNOLOGY, VOLUME 2 -- ADVANCES IN NANOTECHNOLOGY, VOLUME 2 -- CONTENTS -- PREFACE -- Chapter 1NANOSTRUCTURED CONDUCTING POLYMERSAND THEIR NANOCOMPOSITES: CLASSIFICATION,PROPERTIES, FABRICATION AND APPLICATIONS -- Abstract -- 1. Introduction to Nanotechnology -- 1.1. State-of-the-Art of Nanotechnology -- 1.2. Nanotechnology in the Chemical Industry - Opportunitiesand Challenges -- 2. Synthesis and Self-assembly of Nanomaterials -- 2.1. Classification of Nanomaterials -- 3. Overview of Investment and Commercial Value -- 4. Concept of Nanoconducting Polymers -- 4.1. Preparation -- 4.1.1. Electrochemical Synthesis -- 4.1.2. Chemical Synthesis -- Interfacial Polymerization -- 4.1.3. Template Synthesis -- Hard Templates -- Soft Templates -- Seed Template Method -- 4.1.4. Biocatalytic Approach -- 4.1.5. Chemical Vapor Deposition -- 4.2. Classification of Experimental Procedures -- 4.3. Structural Characterization -- 4.3.1. FT-IR Studies -- FT-IR Spectra of Surfactant Doped PANI -- 4.3.2. Raman Spectroscopy -- Raman Spectra f Surfactant Doped PANI -- 4.3.3. Uv-Vis Spectra -- UV-Visible Spectra of Surfactant Doped PANI -- 4.3.4. X-Ray Diffraction -- 4.3.5. Morphological Properties -- 4.3.5.1. Sem Analysis -- 4.3.5.2. TEM -- 4.3.5.3. AFM -- 4.3.6. Mechanism of Conduction -- 4.3.7. Optoelectronic Properties -- 4.3.7.1. Luminescence -- 5. Nanocomposites Based on Conducting Polymers -- 6. Classification of Nano Conducting Polymer BasedNanocomposites -- 6.1. Layered Like Inorganic Media and Porous Hosts -- 6.1.1. PANI-Silica Nanocomposites -- 6.1.2. PANI-Silane Nanoparticles -- 6.2. Nano-scale Metal Particles -- 6.2.1. PANI-Au and PANI-Ag Nanoparticles -- 6.2.3. PANI-Pt Nanoparticles -- 6.2.4. PANI-Pd Nanoparticles -- 6.2.5. PANI-Ni And PANI-Sn Nanoparticles -- 6.2.6. PANI-Cu Nanocomposites -- 6.3. Metal Oxides Based Nanocomposites.

6.3.1. PANI-V2O5 Nanocomposites -- 6.3.2. PANI-TiO2 Nanocomposites -- 6.3.3. PANI-Ferrite Nanocomposites -- 6.3.4. Pani- Al2O3 -- 6.3.5. PANI-SnO2 Nanoparticles -- 6.3.6. PANI-Zno and PANI-CeO2 Nanocomposite -- 6.3.7. PANI-MnO2 Nanocomposites -- 6.3.8. PANI-Phosphate Nanocomposites -- 6.3.9. PANI-CdS Nanocomposites -- 6.3.10. PANI-TiN Nanocomposites -- 6.3.11. PANI-Zeolite -- 6.4. PANI- CNT Nanocomposites -- 6.4.1. PANI - Graphite Nanocomposites Including Carbon Black -- 7. Preparation Techniques -- 7.1. Electro Spinning Process -- 7.2. Mechano-Chemical Synthesis -- 7.3. Vapor-Phase Assisted Surface Polymerization (VASP) -- 7.4. Intercalation Techniques -- 8. Characterization Techniques -- 9. Properties of Nanocomposites -- 9.1. Mechanical Properties -- 9.2. Viscoelastic Properties -- 9.3. Crystallinity -- 9.4. Density/Volume Change -- 9.5. Thermal Properties -- 9.6. Barrier Properties -- 9.7. Electrical Conductivity -- 10. Design, NANO Fabrication and Nano Integration Applicationof Nano Conducting Polymers and Nancomposites -- 10.1. Nanoelectronics -- 10.1.1. Photovoltaics -- 10.1.2. Solar Cells -- 10.1.2.1. Dye-Sensitized Cells -- 10.1.3. Sensors -- 10.1.4. Biosensors -- 10.1.5. Hydrogen Storage -- 10.2. Nanomedicine -- 10.2.1. Biomedical Applications -- 10.2.2. Drug Delivery -- 10.2.3. Conducting-Polymer Nanowire Immunosensor -- 10.2.4. Enzyme Encapsulation -- 10.2.5. Antibacterial Agents in Packaging Systems -- 10.2.6. Actuators -- 11. Challenges in Processing and Manufacturing ofNanocomposites -- 12. Toxicology/Safety of Nanoparticles and Nanostructures -- 13. Ethical and Scientific Issues of Nanotechnology in theWorkplace -- 14. Epilogue -- Acknowledgement -- References -- Chapter 2SEMICONDUCTOR NANOPARTICLES INPHOTOCATALYSIS: THE PRESENT STATUS ANDPERSPECTIVES -- Abstract -- Introduction -- 1. Size Effects in Semiconductor Nanocrystals.

1.1. Classification of the Size Effects in Semiconductor Nanocrystals -- 1.2. Light Absorption by Semiconductor Nanocrystals -- 1.3. Photoluminescence of Semiconductor NPs -- 1.4. Burstein-Moss Effect and Photoinduced Polarization of SemiconductorNPs -- 2. Size Effects in the Photochemistry of Semiconductor NPs -- 2.1. Surface Trapping and Interfacial Transfer of Charge Carriers -- 2.2. Size Effects in the Photocatalytic Reactions with Semiconductor NPs -- 2.3. Photocatalytic Processes with the Participation of PhotopolarizedSemiconductor NPs -- 2.4. Semiconductor Nanoheterostructures with Advanced PhotocatalyticProperties -- Conclusion -- Outlook -- References -- Chapter 3AMORPHOUS NICKEL ALLOY CATALYSTS:RESEARCH, TECHNOLOGY AND APPLICATION -- Abstract -- I. Introduction -- II. Improvement of the Thermal Stability of the Amorphous Ni-PAlloy by Incorporation of Rare Earth Elements [3] -- 1. Preparation of Amorphous Ni-P and Ni-RE-P (RE = Ce, Y, Sm) Alloys bythe Rapid Quenching Method -- 2. Thermal Stability of Amorphous Ni-P and Ni-RE-P Alloys -- 3. The Crystallization Kinetics of Amorphous Ni-P and Ni-RE-P Alloys -- III. Preparation of Amorphous Skeletal Ni-P Alloy (Skeletal Ni-P)by Incorporation and Removal of Al [3] -- 1. Physicochemical Properties of the Amorphous Skeletal Ni-P Alloy -- 2. The Hydrogenation Activity of the Amorphous Skeletal Ni-P AlloyCatalyst -- IV. Case Studies of the Catalytic Performances of AmorphousSkeletal Ni Alloy Catalysts -- 1. Hydrogenation of Unsaturated Organic Compounds on SRNA-1 andSRNA-2 Catalysts -- 2. Aqueous Phase Reforming of Ethylene Glycol on the SRNA-3 Catalyst [7] -- 3. Chemoselective Hydrogenation of 2-Ethylanthraquinone (Eaq) on theSRNA-5 Catalyst [18] -- V. Adsorptive Desulfurization of Transportation Fuels andAromatics on Amorphous Skeletal Ni Alloys.

1. In Situ XPS Study on the Desulfurization of Thiophene on the SRNA-3Alloy [35] -- 2. Adsorptive Desulfurization of Gasoline, Diesel and Aromatics inConventional Reactors [43-51] -- 3. Adsorptive Desulfurization of Gasoline and Aromatics in MagneticallyStabilized Bed Reactor -- V. Amorphous Skeletal Ni Alloy Catalyst for Co Methanation andRelated Reactions -- 1. CO Methanation for H2 Purification [54-56] -- 2. CO Methanation in Hydrogenation of Benzoic Acid toCyclohexanecarboxylic Acid [57-64] -- VI. Purification of ε-Caprolactam by Hydrogenation onAmorphous Skeletal Ni Alloy Catalyst [52,68-76] -- VII. Conclusive Remarks -- Acknowledgements -- References -- Chapter 4MORPHOLOGY CHANGES IN CARBONNANOPARTICLES DUE TO DIFFERENTATOM ARRANGEMENTS -- Abstract -- References -- Chapter 5CELLULAR NANOMECHANICSIN NANOMEDICINE -- Abstract -- Introduction -- Cell-Matrix Adhesions -- Cell Nanomechanics and Migration -- Mechanical Forces Regulate Development and Assembly of FocalAdhesions -- Quantifying Cell Nanomechanics: Atomic Force Microscopy -- Nanomedicine: Cancer and Stem Cells -- Biosensors, Nanomedicine and Disease -- Conclusions -- Acknowledgments -- References -- Chapter 6SIZE-CONTROLLABLE SYNTHESIS ANDCHARACTERIZATION OF WIDE BAND GAPSEMICONDUCTOR OXIDE NANOPARTICLES -- Abstract -- 1. Introduction -- 2. Nanocrystal Synthesis -- 3. Experimental Procedures -- 3.1. α-NbPO5 Glass-Ceramic Monolith -- 3.2. Porous Vycor Glass Monolith -- 3.3. Preparation and Impregnation of Single-Source Precursor into α-NbPO5and PVG Hosts -- 3.4. Thermal Decomposition -- 3.5. Characterization Techniques -- 4. Tin Dioxide -- 4.1. Introduction -- 4.1. SnO2 into Porous Hosts -- 5. Titanium Oxide -- 5.1. Introduction -- 5.2. TiO2 Nanocrystals Outside Host: Temperature Effect -- 5.3. TiO2@PVG -- 5.4. TiO2@α-NbPO5 -- 6. Cerium Dioxide -- 6.1. Introduction -- 6.2. CeO2@PVG.

7. Conclusion -- Acknowledgments -- References -- Chapter 7PT/MESOPOROUS CARBON NANOCATALYSTSFOR POLYMER ELECTROLYTE FUEL CELL -- Abstract -- 1. Introduction -- 2. Syntheses of Materials -- 2.1. Synthesis of MC Powder -- 2.2. Syntheses of Pt/MC Catalysts -- 3. Material Characterization -- 3.1. Characterization of MC -- 3.2. Characterization of Pt/MC Catalysts -- 4. Oxygen Reduction Reaction (ORR) Analyses -- 4.1. Experimental Set-Up -- 4.2. ORR Analyses for Ptnh3/MC -- 4.3. ORR Analyses and Cross Sectional Observation of Ptac/MC and Ptcl/MC -- 5. Oxygen Transfer and Storage Processes inside the Mesopores -- 5.1. Nafion® Effect on Oxygen Transport -- 5.2. Gaseous Oxygen Supply -- 5.3. Oxygen Storage System inside the Mesopores -- 6. Conclusion -- References -- Chapter 8CATALYSTS BASED ON THE NANODISPERSEDMETASTABLE IRON OXYHYDROXIDE, 2-LINEFERRIHYDRITE -- Abstract -- Introduction -- Crystal Structure of Ferrihydrite -- Preparation of Synthetic Ferrihydrite -- Catalytic Properties -- Kinetics of 2lfh Crystallization to Hematite and Role of Promoters -- Conclusion -- Acknowledgment -- References -- Chapter 9NOVEL HOLLOW LOTUS-LIKE ZNO ASSEMBLIESFABRICATED IN THE PRESENCE OF F127 TRIBLOCKCOPOLYMERS -- Abstract -- I. Introduction -- II. Experimental -- III. Results and Discussion -- 3.1. Structure and Morphology Characterizations of the Sample -- 3.2. Factors on Formation of Hollow Lotus-Like Zno Nanostructures -- 3.2.1. Formation Process of the Lotus-Like Architectures -- 3.2.2. Influence of the Concentration of Citrate -- 3.2.3. Influence of the Concentration of F127 -- 3.2.4. Influence of the Concentration of Sodium Hydroxide -- 3.3. Formation Mechanism of the Hollow Lotus-Like Zno Nanostructures -- 3.4. Photoluminenscent Properties -- IV. Conclusions -- Acknowledgment -- References.

Chapter 10SYNTHESIS AND OPTICAL PROPERTIES OF POLYMERFUNCTIONALIZED INORGANIC NANOPARTICLES.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: