Cover image for Barrier Properties of Polymer Clay Nanocomposites.
Barrier Properties of Polymer Clay Nanocomposites.
Title:
Barrier Properties of Polymer Clay Nanocomposites.
Author:
Mittal, Vikas.
ISBN:
9781617618000
Personal Author:
Physical Description:
1 online resource (283 pages)
Series:
Nanotechnology Science and Technology
Contents:
BARRIER PROPERTIES OFPOLYMER CLAY NANOCOMPOSITES -- CONTENTS -- PREFACE -- BARRIER PROPERTIESOF COMPOSITE MATERIALS -- ABSTRACT -- 1.1. INTRODUCTION -- 1.2. THEORY OF PERMEATION -- 1.3. PERMEATION THROUGH HETEROGENEOUS MEDIA -- 1.3.1. Laminates -- 1.3.2. Materials with Plate-Like Inclusions -- 1.4. MODIFIED PERMEATION MODELS -- 1.5. MEASUREMENT OF BARRIER PERFORMANCE -- 1.6. TRANSPORT MECHANISM ANDDIFFERENT POLYMER SYSTEMS -- REFERENCES -- COMPATIBILIZATION OF INTERFACES INNANOCOMPOSITES: ROUTE TOWARDSBETTER BARRIER PROPERTIES -- ABSTRACT -- 2.1. INTRODUCTION -- 2.2. CONVENTIONAL NANOCOMPOSITES AND NEED OF NEW SYSTEMS -- 2.3. GRAFTING 'TO' THE SURFACE APPROACH -- 2.4. GRAFTING 'FROM' THE SURFACE APPROACH -- 2.5. GRAFTING USING CONTROLLED LIVINGPOLYMERIZATION APPROACH -- 2.6. POLYOLEFINS GRAFTING 'FROM' THE SURFACE -- REFERENCES -- BARRIER PROPERTIES OF POLYURETHANENANOCOMPOSITES AND THEIR RELATIONSHIP TOSHAPE MEMORY PROPERTIES -- ABSTRACT -- 3.1. INTRODUCTION -- 3.2. TRANSPORT PHENOMENA IN PRISTINE POLYMERS -- 3.2.1. Early Developments -- 3.2.2. Basic Relationships -- 3.2.3. Nature of the Penetrant -- 3.2.4. Nature of the Polymer -- 3.2.4.1. Effect of Chemical Constituents and the Presence of Chemical Cross-links -- 3.2.4.2. Effect of Crystallinity -- 3.2.4.3. Effect of Chain Orientation -- 3.3. TRANSPORT PHENOMENA IN MICROANDNANO-COMPOSITES -- 3.4. CONTINUUM MODELING OF TRANSPORTPROPERTIES OF POLYMER COMPOSITES -- 3.5. PERMEABILITY OF POLYURETHANES (PU) ANDPOLYURETHANEUREAS (PUU): STRUCTURE-PROPERTYRELATIONSHIPS -- 3.5.1. Transport Mechanisms -- 3.5.2. Effect of Soft Segment Type, Its Composition, and Molecular Weight -- 3.5.3. Effect of Hard Segment Content and the Extent of Phase Separation -- 3.5.4. Effect of Penetrant Type -- 3.6. PERMEABILITY OF FILLED POLYURETHANES ANDPOLYURETHANEUREAS: MICRO- AND NANOCOMPOSITES.

3.7. IMPORTANCE OF TRANSPORT PHENOMENONIN SHAPE MEMORY POLYMERS -- 3.7.1. Importance of Mass Transfer in SMP:Actuation by Water Absorption in Surgical Procedures -- 3.7.2. Importance of Mass Transfer through SMP:Textile Fabrics and Refrigerators -- 3.8. CONCLUSIONS -- 3.9. ACKNOWLEDGEMENTS -- REFERENCES -- PERMEATION PROPERTIESOF EPOXY NANOCOMPOSITES -- ABSTRACT -- 4.1. INTRODUCTION -- 4.2. MODELING OF THE PERMEABILITY OF NANOCOMPOSITES -- 4.3. PERMEABILITY OF EPOXY NANOCOMPOSITES -- 4.3.1. Effect of Nanoplatelet Loading -- 4.3.2. Effect of Nanoplatelet Dispersion -- 4.3.3. Effect of Nanoplatelet Aspect Ratio -- 4.3.4. Effect of Nanoplatelet Orientation -- 4.3.5. Control of Nanocomposite Morphology -- 4.4. CONCLUSIONS -- 4.5. ACKNOWLEDGMENTS -- REFERENCES -- BARRIER PROPERTIESOF POLYOLEFIN NANOCOMPOSITES -- ABSTRACT -- 5.1. INTRODUCTION -- 5.2. BARRIER PROPERTIES OF POLYOLEFINNANOCOMPOSITES: EFFECT OF COMPATIBILIZER -- 5.3. ROLE OF OPTIMUM CLAY MODIFICATION -- 5.4. USE OF LONG CHAIN SURFACE MODIFICATIONS -- 5.5. USE OF HIGHER CHAIN DENSITY AMMONIUM MODIFICATIONS -- 5.6. EFFECT OF CEC ON THE BARRIER PERFORMANCEOF POLYOLEFIN NANOCOMPOSITES -- 5.7. ADVANCES IN FILLER SURFACE MODIFICATIONSFOR BETTER BARRIER PROPERTIES -- 5.8. MODELING OF BARRIER PROPERTIES -- REFERENCES -- PERMEATION PROPERTIES OF WATER-SOLUBLEPOLYMER NANOCOMPOSITE SYSTEMS -- ABSTRACT -- 6.1. INTRODUCTION -- 6.2. EXPERIMENTAL -- 6.2.1. Materials -- 6.2.2. Preparation of PVA/SPT Hybrid Films -- 6.2.3. Preparation of PVA/PAM/SPT Hybrid Films -- 6.2.4. Characterization -- 6.3. RESULTS AND DISCUSSION -- 6.3.1. PVA/SPT Nanocomposite Films -- Dispersion of the Clay in PVA -- Morphology -- 6.3.2. PVA/PAM/SPT Nanocomposite Films -- Dispersion of the Clay in PVA/PAM -- Morphology -- 6.3.3. Gas Permeation Properties of PVA Hybrid and PVA/PAM HybridFilms -- 6.3.4. Optical Properties.

6.4. CONCLUSION -- REFERENCES -- POLYAMIDE NANOCOMPOSITES AS GASPERMEATION BARRIER -- ABSTRACT -- 7.1. INTRODUCTION -- 7.2. POLYMER LAYERED SILICATE NANOCOMPOSITES -- 7.3. BARRIER ENHANCEMENTS WITH PLATELETS NANOFILLERS -- 7.4. GAS BARRIER PROPERTIES OF POLYAMIDE NANOCOMPOSITES -- 7.4.1. Crystallinity and Crystal Phase of Polyamide Nanocomposites -- 7.4.2. Chain Mobility and Constrained Regions of Amorphous Phase -- 7.4.3. Correlation between Structure, Processingand Gas Barrier Properties of Polyamide Nanocomposites -- 7.4.4. Effect of Humidity on Polyamide Gas Barrier -- 7.5. POLYAMIDE NANOCOMPOSITESIN MULTICOMPONENT STRUCTURES -- REFERENCES -- ROLE OF FILLER ASPECT RATIO ON BARRIERPROPERTIES OF NANOCOMPOSITES -- ABSTRACT -- 8.1. INTRODUCTION -- 8.2. MODELS, SIMULATIONS, AND EXPERIMENTALDATA ON ASPECT RATIO EFFECTS -- 8.2.1. Ribbons in a Regular Array -- 8.2.2. Ribbons in a Random Array -- 8.2.3. Polydisperse Ribbons in a Random Array -- 8.2.4. Hexagonal Flakes -- 8.2.5. Disk-Like Platelets -- 8.2.6. Comparison of Analytical Models for Aligned Filler Platelets -- 8.2.7. Three-Dimensional Rectangular Platelets -- 8.2.8. Aspect Ratio and Filler Orientation -- 8.2.9. Aspect Ratio and Interfacial Effects -- 8.3. ASPECT RATIO EFFECTS PARTICULARTO NANOCOMPOSITES -- 8.3.1. Nanoplatelet Curling at High Aspect Ratio -- 8.3.2. Self-Avoiding Walk in Nanocomposites -- 8.3.3. Percolation Threshold in Nanocomposites -- 8.3.4. Aspect Ratio and Interfacial Regions in Nanocomposites -- 8.3.5. Aspect Ratio and Effects of Intercalation on Barrier Performance -- 8.3.6. Free Volume Effects in Nanocomposites -- 8.4. CONCLUSIONS -- REFERENCES -- BARRIER PROPERTIES OF POLY(ETHYLENE-CO-VINYL ACETATE) NANOCOMPOSITES -- ABSTRACT -- 9.1. INTRODUCTION -- 9.2. TYPES OF FILLERS USED IN EVA NANOCOMPOSITES -- 9.2.1. Clay Minerals -- 9.2.2. Layered Double Hydroxide (LDH).

9.2.3. Carbon Nanotubes (CNT) -- 9.2.4. Inorganic Filler Other than Clay/LDH/CNT -- 9.3. CHARACTERIZATION AND ESTABLISHMENTOF NANOSTRUCTURE OF COMPOSITES -- 9.3.1. EVA/Clay Nanocomposites -- X-Ray Diffraction -- Infrared Spectroscopy -- Transmission Electron Microscopy -- 9.3.2. EVA/LDH Nanocomposites -- 9.4. PROPERTIES OF EVA NANOCOMPOSITES -- 9.4.1. In Improvement of Thermal Stability of EVA -- 9.4.1.1. Clay/EVA Nanocomposites -- 9.4.1.2. EVA/LDH Nanocomposites -- 9.4.1.3. EVA Nanocomposites Other than Clay and LDH -- 9.4.2. In Decreasing Flammability of EVA -- 9.4.3. In Reduction of Gas Permeability of EVA -- 9.5. CONCLUSIONS -- 9.6. ACKNOWLEDGEMENT -- REFERENCES -- BARRIER PROPERTIES OF STYRENE-ACRYLATECOPOLYMER NANOCOMPOSITES -- ABSTRACT -- 10.1. INTRODUCTION -- 10.2. MATERIALS -- 10.3. PROPERTY MEASUREMENTS -- 10.4. TENSILE PROPERTIES -- 10.5. MOISTURE ABSORPTION -- 10.6. CONCLUSIONS -- REFERENCES -- BARRIER PROPERTIES OFBIODEGRADABLE NANOCOMPOSITES -- ABSTRACT -- 11.1. INTRODUCTION -- 11.2. BARRIER PROPERTIES OFBIODEGRADABLE NANOCOMPOSITES -- 11.2.1. Thermoplastic Starch (TPS) -- 11.2.2. Cellulose and Their Derivatives -- 11.2.3. Polylactic Acid (PLA) -- 11.2.4. Polycaprolactone (PCL) -- 11.2.5. PHA, PHB and PBS -- 11.2.5.1. Polyhydroxyalkanoate (PHA) -- 11.2.5.2. Polyhydroxybutyrate (PHB) -- 11.2.5.3. Poly(butylene succinate) (PBS) -- 11.3. CONCLUSIONS -- REFERENCES -- INDEX.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: