Cover image for Traffic Related Air Pollution and Internal Combustion Engines.
Traffic Related Air Pollution and Internal Combustion Engines.
Title:
Traffic Related Air Pollution and Internal Combustion Engines.
Author:
Demidov, Sergey.
ISBN:
9781612098869
Personal Author:
Physical Description:
1 online resource (438 pages)
Series:
Air, Water and Soil Pollution Science and Technology
Contents:
TRAFFIC RELATED AIR POLLUTIONAND INTERNAL COMBUSTION ENGINES -- CONTENTS -- PREFACE -- TRAFFIC- RELATEDAIR POLLUTION -- Health Impact of Air Pollution -- The Vehicular Traffic Factor -- Hydrocarbons -- Nitrogen Oxides -- Sulphur Oxides -- Ozone -- Suspended Particles -- Heavy Metals -- Lead -- Cadmium -- Chromium -- Vanadium -- Final Remarks -- References -- ROAD TRAFFIC EMISSION AND FUEL CONSUMPTIONMODELLING: TRENDS, NEW DEVELOPMENTSAND FUTURE CHALLENGES -- Abstract -- Introduction -- Generic Structure of Emission Models -- Empirical Base of Emission Models -- Generic Computation Procedure -- Vehicle Classification -- Modelling of Driving Behaviour (Model Classification) -- Review of Current Traffic Emission and Fuel ConsumptionModels -- Type 1 Models -- The Type 1A Model -- The Type 1B Model -- The Type 1C Model -- Type 2 Models -- Type 3 Models -- The Type 3A Model -- The Type 3B Model -- Overview of Model Features -- Model Application -- Modelling Objectives -- Model Input -- Spatial and Temporal Resolution -- Prediction Accuracy -- Inherent Variability in Vehicle Emissions -- Input Data Availability (Modelling Assumptions) -- Input Data Quality -- Model Development Aspects -- Summary -- Outlook -- Conclusion -- References -- TAILPIPE PARTICLE EMISSION FACTORS DERIVEDFOR MOTOR VEHICLES FOR APPLICATION TOTRANSPORT MODELLING AND HEALTH IMPACTASSESSMENTS OF URBAN FLEETS -- Abstract -- Introduction -- Method -- Model Variables Examined -- Statistical Analysis of Model Variables -- The Basis for Selecting the Most Appropriate Particle Emission Factors -- Results and Discussion -- Variation in Published Emission Factors Explained by theStatistical Models -- Statistical Relationships between Categorical Model Variables -- Conclusion -- References.

SNOWMOBILE POLLUTION IN NORTH AMERICA:ANNUAL FLUX ESTIMATES OF AIR TOXICSAND IMPLICATIONS FOR POTENTIAL PERSONALEXPOSURE IN SNOWMOBILE DOMINATEDCOMMUNITIES -- Abstract -- Introduction -- Background -- Snowmobile Use in North America -- Air Toxics and Human Health Risks -- US and Canadian National Air Toxics Assessments -- Methods -- Experimental -- Estimating North American Air Toxic Emission Fluxes from Snowmobiles inYNP -- Assumptions -- Results -- Ambient Levels of Air Toxics in YNP and West Yellowstone -- Exhaust Flux Estimates -- Flux Estimates Based on Box Model Method -- Estimating North American Snowmobile Air Toxic Production -- Conclusion -- References -- MODELING OF TRAFFIC-RELATED ENVIRONMENTALPOLLUTION IN THE GIS -- Abstract -- 1. Introduction -- 2. Traffic-Related Environmental Pollution -- 3. Description of Software Tools Used for Modeling of Traffic-Related Environmental Pollution -- 4. A Case Study for Modeling of Traffic-Related EnvironmentalPollution -- 4.1. Mapping of the Emission Sources -- 4.2. Simulation of Traffic-Related Environmental Pollution -- Conclusion -- Acknowledgements -- References -- USING MONITORING DATA TO EVALUATETHE VARIATIONS OF TRAFFIC-RELATED AIRPOLLUTION IN TAIWAN FROM 1994 TO 2006 -- Abstract -- Introduction -- Methods -- Area of Study and Measurements -- Monitoring Stations and Monitoring Items -- Results and Discussion -- Different Pollutant Variations in TAQMSs from 1994 to 2006 -- Comparisons of SO2 Variations between TAQMSsand Other AQMSs -- Comparisons of CO Variations between TAQMSsand Other AQMSs -- Comparisons of O3 Variations between TAQMSsand Other AQMSs -- Comparisons of PM10 Variations between TAQMSsand Other AQMSs -- Comparisons of NO2 Variations between TAQMSsand Other AQMSs -- Comparisons of NMHC Variations between TAQMSsand Other AQMSs.

Regulations to Control the Transportation Air Pollution -- Conclusion -- References -- MOBILE LABORATORIES FOR PARTICLEAND GASEOUS POLLUTANTS -- Abstract -- 1. Introduction -- 2. Spatial/Temporal Distribution -- 3. Emissions and Dispersion Characteristics of Tailpipe Exhaust -- 4. Fleet Emission Characteristics -- 5. Emission Factors of Individual Vehicles -- Conclusion -- References -- URBAN TREES AND AIR AMELIORATION CAPABILITY -- Abstract -- Introduction -- Materials and Methods -- Site Description -- Traffic Density -- Carbon Dioxide Concentration and Urban Climate -- Tree Structure -- CO2 Sequestration -- Chemical Analysis -- Statistic Analysis -- Results -- Traffic Density -- Urban Climate -- Carbon Dioxide Trend -- Tree Structure -- CO2 Sequestration -- Q. Ilex leaf Metal Concentration -- Statistical Analysis -- Conclusions -- References -- DOWNSIZING DIRECT INJECTION SPARK IGNITIONENGINES: A TIMESCALE ANALYSIS -- Abstract -- Nomenclature -- Abbreviations -- Introduction -- Background -- Aims and Objectives -- Plan -- Definitions and Basic Theory -- Engine Restrictions -- Droplet Timescales-Momentum -- Droplet Timescales-Heat -- Droplet Timescales-Mass -- Engine Thermodynamics -- Fuel Droplet Equations and Physical Properties -- Momentum Equations -- Droplet Heat-Up Equations -- Droplet Mass-Transfer Equations -- Simulations -- Global Engine Timescale and Piston Locus Results -- Droplet Timescale Results -- Droplet Momentum Timescale Results -- Droplet Heat-Up Timescale Results -- Droplet Mass-Transfer Timescale Results -- Droplet Position Compared to Piston Position -- Summary -- Electrostatic Charging -- Background Theory -- Simulation Parameters -- Results -- Conclusion -- Appendix 1. Fuel Properties and Correlations -- References -- RECENT PROGRESS IN HYDROGEN-FUELEDINTERNAL COMBUSTION ENGINES -- Abstract -- 1. Introduction.

1.1. Contents -- 1.2. Why Hydrogen? -- 1.3. Why Hydrogen-Fueled Internal Combustion Engines? -- 1.4. Hydrogen Properties Relevant to ICEs -- 2. Literature Review -- 2.1. Proof of Concept Reports -- 2.1.1. Abnormal Combustion -- 2.1.2. Mixture Formation -- 2.1.3. Hydrogen Engine Design Features -- 2.2. 2nd Generation H2 ICEs -- 2.3. 3rd Generation: Increasing the Power Output -- 3. Optimizing PFI Engines -- 3.1. Introduction -- 3.2. Efficiency Comparison Hydrogen-Gasoline -- 3.2.1. Experimental Set-up -- 3.2.2. Results -- 3.3. Influence of Variable Valve Timing -- 3.3.1. Introduction -- 3.3.2. Wide Open Throttle Operation -- 3.3.3. Throttled Operation -- 3.3.4. Extension to Higher Engine Speeds -- 3.4. Supercharging and EGR -- 3.4.1. Introduction -- 3.4.2. Experimental Set-up -- 3.4.3. Results -- 4. Conclusion -- Acknowledgements -- Nomenclature -- References -- IN SEARCH OF IMPROVEMENTSFOR THE COMPUTATIONAL SIMULATIONOF INTERNAL COMBUSTION ENGINES -- Abstract -- 1. Introduction -- 2. Governing Equations and Numerical Approximation -- 2.1. Governing Equations -- 2.1.1. Turbulence Modeling -- 2.1.2. Boundary Conditions -- 2.1.3. Arbitrary Lagrangian Eulerian Description of Governing Equations -- 2.2. Numerical Implementation -- 2.2.1. Finite Element Formulation -- 2.2.2. Time Discretization -- 2.2.3. Dynamic Boundary Conditions Using Lagrange Multipliers -- 3. Mesh Dynamics -- 3.1. Mesh Quality -- 3.2. The Mesh Dynamics Strategy -- 3.2.1. Functional Design -- 3.2.2. Differential Predictor -- 3.2.3. Avoiding the Relaxation of the Initial Mesh -- 3.2.4. Results -- 3.3. Simultaneous Mesh Untangling and Smoothing -- 3.3.1. Functional Regularization -- 3.3.2. Solution Strategy -- 3.3.3. Results -- 4. Resolution of Compressible Flows in the Low Mach NumberLimit -- 4.1. Problem Definition and Eigenvalues Analysis -- 4.1.1. Preconditioning Strategies.

4.2. Numerical Implementation -- 4.2.1. Variational Formulation -- 4.2.2. Dynamic Boundary Conditions -- 4.3. Results -- 4.3.1. Flow in a Lid Driven Cavity -- 4.3.2. Flow in a Channel with a Moving Indentation -- 4.3.3. Opposed-Piston Engine -- 5. Coupling of 1D/Multi-D Domains for Compressible Flows -- 5.1. Coupling for Implicit Schemes 'Monolithically' Solved -- 5.1.1. Coupling of 1D/Multi-D Domains -- 5.2. Results -- 5.2.1. 1D/1D Coupling -- 5.2.2. 2D/1D Coupling -- 5.2.3. 3D/1D Coupling -- 6. Numerical Simulation of the MRCVC Engine -- 6.1. Operation and Geometry of MRCVC -- 6.2. Numerical Simulation of Fluid Flow in the MRCVC Engine -- 6.2.1. Computational Mesh Dynamic Problem -- 6.2.2. Computational Fluid Dynamic Problem -- 7. Conclusion -- Appendix: Pipe Junction 0D Model -- References -- THERMAL EFFICIENCY OF HYDROGEN COMBUSTIONENGINE -- Abstract -- 1. Introduction -- 2. Comparison of Hydrogen and Hydrocarbon -- 4. Influence of Excess Air Ratio and Volumetric Efficiency -- 5. Exhaust Heat Loss -- Summary -- References -- DYNAMICS OF PRESSURE FLUCTUATIONSIN INTERNAL COMBUSTION ENGINES -- Abstract -- 1. Introduction -- 2. Wavelet Analysis Methodology -- 3. Experimental Facilities and Measurement Procedure -- 3.1. Pressure Measurements in a Spark-Ignition Engine -- 3.2. Pressure Measurements in a Diesel Engine -- 4. Wavelet Results for Maximum Pressure Variations -- 4.1. The Spark-Ignition Engine -- 4.2. The Diesel Engine -- 5. Concluding Remarks -- Acknowledgements -- References -- SYNGAS PRODUCTION BY PARTIAL OXIDATIONUSING A COMPRESSION IGNITION ENGINE -- Abstract -- Introduction -- Experimental -- Experimental Apparatus -- Experimental Method -- Results and Discussion -- Limit of Combustibility -- Results of the Parametric Studies -- 1. Effect of Oxygen/Methane Ratio -- 2. Effect of Total Flow Rate.

3. Effect of Intake Preheating Temperature.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: