
Polymer Electrolyte Membrane Fuel Cells and Electrocatalysts.
Title:
Polymer Electrolyte Membrane Fuel Cells and Electrocatalysts.
Author:
Esposito, Richard.
ISBN:
9781617285639
Personal Author:
Physical Description:
1 online resource (475 pages)
Contents:
POLYMER ELECTROLYTE MEMBRANEFUEL CELLS AND ELECTROCATALYSTS -- CONTENTS -- PREFACE -- SYNTHESIS OF POLYMER ELECTROLYTE MEMBRANEFOR FUEL CELL APPLICATIONS -- ABSTRACT -- 1. INTRODUCTION -- 2. MATERIALS AND METHODS -- 2.1 Materials -- 2.2 Membrane Manufacturing Procedures -- 3. EVALUATION OF PROTON EXCHANGE MEMBRANE(PEM) PERFORMANCE -- 3.1 Conductivity -- 3.1.1 Through-Plane Conductivity Measurements -- Advantages -- Disadvantages -- 3.1.2 In-Plane Conductivity Measurements -- Advantages -- Disadvantages -- 3.2 Resistance -- 3.3 Theoretical Model to Measure Membrane Conductivity and ResistanceBased on Proton Flow -- 3.4 Experimental Set-Up and Procedures -- 3.4.1 Measurement of Proton Transfer Rate and Membrane Resistance -- 3.4.2 pH Measuring Process and Calculation of Proton Concentration -- 3.4.3 Measurement of Proton Transfer -- 4. RESULTS AND DISCUSSIONS -- 4.1 Thermal Stability of Membrane Conductivity -- 4.2 Relative Resistance -- 4.3 Water Uptake Content -- 5. CONCLUSIONS -- REFERENCES -- THE DEVELOPMENT OF BIPOLAR PLATE MATERIALSFOR POLYMER ELECTROLYTE MEMBRANE FUELCELLS (PEMFC) -- ABSTRACT -- Keywords: -- 1. FUEL CELLS -- 2. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS (PEMFCS) -- 2.1 What is PEMFCs? -- 2.2 Why Are PEMFCs so Important? -- 2.3 How do PEMFCs Work? -- 2.3.1 Activation Polarization -- 2.3.2 Ohmic Polarization -- 2.3.3 Concentration Polarization -- 2.3.4 Reactant Crossover and Internal Current Losses -- 3. BIPOLAR PLATES AND THEIR DESIGN -- 3.1 What Are the Bipolar Plates? -- 3.2 Why Are the Bipolar Plates Important? -- 3.3 Bipolar Plate Design -- Pin-Type Flow Field -- Straight Flow Field -- Serpentine Flow Field -- Integrated Flow Field -- Interdigitated Flow Field -- Flow-Field Designs Made From Metal Sheets -- 3.4 Materials for Bipolar Plates -- 3.4.1 Graphite Bipolar Plates -- 3.4.2 Composite Bipolar Plates.
3.4.3 Metallic Bipolar Plates -- 3.4.3.1 Uncoated Metals -- 3.4.3.2 Coated Metals -- 4. CONCLUDING REMARKS -- REFERENCE -- FUEL CELL CONVERTERSFOR HIGH POWER APPLICATIONS -- ABSTRACT -- I. INTRODUCTION -- II. FUEL CELL TECHNOLOGY -- A. Basic Principle -- B. Proton Exchange Membrane Fuel Cell -- C. PEM Fuel Cell System -- D. PEM Fuel Cell Performance -- 1. Static Characteristics -- 2. Dynamic Characteristics -- III. FUEL CELL POWER CONDITIONING -- IV. FUEL CELL POWER CONVERTERS -- A. Non-Isolated Converter -- 1. Design Example of 2-Phase Interleaved Fuel Cell Converter [114] -- 2. Experimental Results of 2-Phase Interleaved Fuel Cell Converter -- B. Modified Non-Isolated Converter -- C. Ground Isolated Converter -- V. CONCLUSION -- ACKNOWLEDGMENT -- BIOGRAPHIES -- Phatiphat Thounthong -- Bernard Davat -- REFERENCES -- CFD MODELS FOR ANALYSIS AND DESIGNOF AMBIENT AIR-BREATHING PEM FUEL CELLS -- ABSTRACT -- 1. INTRODUCTION -- 1.1. Background -- 1.2. Transport Phenomena in Air-Breathing PEM Fuel Cells -- 1.3. Computational Air-Breathing Pem Fuel Cell Modelling -- 2. MODEL DESCRIPTION -- 2.1. Computational Domains -- 2.2. Modelling Equations -- 2.2.1. Air and Fuel Flow -- 2.2.2. Gas Diffusion Layers -- 2.2.3. Catalyst Layers -- 2.2.4. Membrane -- 2.2.5. Cell Potential -- 3. RESULTS AND DISCUSSION -- 4. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- NEW TRENDS IN THE DEVELOPMENTOF PEMFC CATALYSTS -- ABSTRACT -- 1.1 INTRODUCTION -- 1.2 MATERIALS FOR PEMFC CATALYST SUPPORT -- 1.2.1. Carbon Supports -- Nanofibers, Nanotubes and Mesoporous Carbons -- Carbon Aerogels -- 1.2.2. Alternative Inorganic Supports -- 1.3 CATALYSTS FOR PEMFCS -- 1.3.1. Carbon Supported PGM and Metal Alloy Catalysts -- Core-Shell Structures -- 1.3.2. Non-Noble Metal Catalysts -- 1.3.3. Supercritical Fluids For Synthesis And Surface Modification.
1.4. ELECTROLYTE MATERIALS FOR CATALYST MODIFICATION -- 1.4.1. Low Molecular Weight Electrolyte -- 1.4.2 Catalyst Layers Modified With Heteropolyacids -- 1.5. CONCLUSION -- REFERENCES -- AIR-BREATHING DIRECT METHANOL FUEL CELLSWITH CATALYSED TITANIUM MESH ELECTRODES -- ABSTRACT -- 1. INTRODUCTION -- 2. EXPERIMENTAL -- Membrane Electrode Assembly -- Single Cell Fixture -- Design of Stack -- 3 RESULTS AND DISCUSSION -- 4. SUMMARY AND CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- METAL ELECTROCATALYSTS FOR DIRECTLIQUID-FEED FUEL CELLS -- ABSTRACT -- 1. INTRODUCTION -- 2. DFT-BASED THEORETICAL CONCEPTS -- 2.1 Metal D-Band Center -- 2.2 Segregation -- 2.3 Useful Theoretical Tools -- 3. METAL-BASED ELECTROCATALYSTS FOR DLFCS -- 3.1 Direct Methanol Fuel Cell -- 3.2 Direct Ethanol Fuel Cell -- 3.3 Direct Propanol Fuel Cell -- 3.4 Direct Acid Formic Fuel Cell -- 3.5 Direct Borohydride Fuel Cell -- 4. CONCLUSION -- REFERENCES -- THE ELECTRO-CATALYTIC AND MASS TRANSPORTCOMPONENTS OF THE ELECTRODE POTENTIAL LOSSIN A PAFC CATHODE DETERMINED USINGA NUMERICAL MODEL -- ABSTRACT -- INTRODUCTION -- MODEL DESCRIPTION -- COMPUTATIONAL METHOD -- RESULTS AND DISCUSSION -- CONCLUSIONS -- ACKNOWLEDGMENTS -- LIST OF SYMBOLS -- REFERENCES -- ALCOHOL OXIDATION ON PTAND PD BASED ELECTROCATALYSTS -- ABSTRACT -- 1. INTRODUCTION -- 2. ALCOHOL ELECTROOXIDATION ON PT AND PD -- 3 ALCOHOL ELECTROOXIDATION ON PT-M AND PD-M -- 4. ALCOHOL ELECTROOXIDATION ON PT-OXIDE AND PD-OXIDE -- 5. CONCLUSIONS -- REFERENCES -- PHYSICOCHEMICAL AND ELECTROCATALYTICPROPERTIES OF PtRu/C PREPAREDBY IMPREGNATION REDUCTION METHOD: EFFECTOF PREPARATION PARAMETERS -- ABSTRACT -- INTRODUCTION -- EXPERIMENTAL SECTION -- Chemicals -- Preparation of PtRu/C Catalysts -- Physical Characterization -- Electrochemical Measurement -- RESULTS AND DISCUSSIONS.
Effect of Preparation Parameters on the Structure, Morphology and SurfaceComposition of Ptru/C Catalysts -- Mechanisms for Catalyst Impregnation -- Electrochemical Measurements -- Application of Flow Injection Technique in Continuous ElectrocatalystSynthesis -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- REVIEWED BY -- CONDUCTING POLYMERS USED AS CATALYSTSUPPORT FOR FUEL CELL APPLICATION -- ABSTRACT -- INTRODUCTION -- CONDUCTING POLYMERS -- Electrochemical Preparations -- Chemical Preparations -- Conducting Polymers-Carbon Black Composites -- Conducting Polymers-Carbon Nanotube Composites -- Other Conducting Polymer Composites -- REFERENCES -- ELECTROCATALYTIC MODIFIED ELECTRODESWITH TRANSITION METAL AZAMACROCYCLESAND OTHER COMPLEXES FOR THE DETECTIONOF SULFUR AND NITROGEN OXOANIONS -- ABSTRACT -- I. NITROGEN OXOAANIONS -- I. 1. Nitrate Determination -- I. 2. Nitrite Determination -- II. SULFUR OXOANIONS -- II. 1. Sulfite Detection -- II. 2. Determination of Other Sulfur Oxoanions -- CONCLUDING REMARKS -- GENERAL CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- COMPOUND MICRO-GRID OF HYDROGENATIONCITY-GAS ENGINE AND PEM FUEL CELL -- ABSTRACT -- INTRODUCTION -- SYSTEM SCHEME -- Impe Model -- Operation Method of the Micro-Grid -- Equipment Scheme -- EQUIPMENT CHARACTERISTICS -- Output Characteristics of Gas Engine Power Generator -- Carbon Dioxide Emissions of NEG -- PEM-FC System -- CASE STUDY -- Urban Area Model -- Power Demand Model -- Analysis Flow -- RESULTS AND DISCUSSIONS -- Power Load f Micro-Grid -- Capacity of Power Plant -- Power Generation Efficiency -- Carbon Dioxide Emissions -- Heat Demand and Exhaust Heat Output -- CONCLUSIONS -- ACKNOWLEDGMENTS -- NOMENCLATURE -- Nomenclature (Continued) -- REFERENCES -- INDEX.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View