
Degradable Polymers for Skeletal Implants.
Title:
Degradable Polymers for Skeletal Implants.
Author:
Wuisman, Paul.I.J.M.
ISBN:
9781617283574
Personal Author:
Physical Description:
1 online resource (407 pages)
Contents:
DEGRADABLE POLYMERS FORSKELETAL IMPLANTS -- DEDICATION -- CONTENTS -- PREFACE -- ABOUT THE EDITORS -- PART I: BASIC SCIENCE AND ENGINEERING -- THE MOLECULAR STRUCTURE OFDEGRADABLE POLYMERS -- ABSTRACT -- INTRODUCTION -- BIODEGRADABLE POLYMERS -- THE CHEMISTRY OF ESTERS -- THE CHEMISTRY OF POLYESTERS -- POLYMER TERMINOLOGY -- BIOCOMPATIBILITY OF BIODEGRADABLE POLYMERS -- POLYESTERS AS BIOMEDICAL MATERIALS -- 1. Poly(lactic acid), PLA -- 2. Poly(glycolic acid), PGA -- 3. Copolymers of PGA and PLA, Poly(lactide-co-glycolide), PLGA -- 4. Bacterial Polyesters -- 5. Other Polyesters -- 6. Polyurethanes -- BIODEGRADATION -- REFERENCES -- TIME-DEPENDENT FAILURE IN LOAD-BEARINGPOLYMERS. A POTENTIAL HAZARD IN STRUCTURALAPPLICATIONS OF POLYLACTIDES -- ABSTRACT -- INTRODUCTION -- DELAYED FAILURE IN POLYMERS -- Phenomenology -- Origin -- Intrinsic Deformation Behavior -- Predictability of Failure -- Delayed Failure of Polylactides -- Materials -- Mechanical Evaluation -- Long-Term Performance of PLA's Vs other Glassy Polymers -- Influence of Molecular Degradation -- CONCLUDING REMARKS -- REFERENCES -- POLY(LACTIDE)S AND THEIR COPOLYMERS:PHYSICAL PROPERTIES AND HYDROLYTICDEGRADATION -- ABSTRACT -- INTRODUCTION -- 1. SYNTHESIS -- 2. MECHANICAL PROPERTIES -- 2.1. Effect of Molecular Characteristics -- 2.2. Effect of Highly Ordered Structures -- 2.3. Effect of Polymer Blending -- 2.4. Effects of Material Morphology -- 2. SURFACE PROPERTIES -- 3. HYDROLYTIC DEGRADATION -- 5.1. Effects of Molecular Structures -- 5.2. Effects of Highly Ordered Structures -- 5.3. Effects of Blending and Additives -- 5.4. Effects of Material Morphology -- CONCLUSION -- REFERENCES -- COMPOSITES BASED ON DEGRADABLE POLYMERS -- ABSTRACT -- INTRODUCTION -- MATRIX MATERIALS -- MECHANICAL PROPERTIES OF COMPOSITES -- IN VITRO AND IN VIVO TESTING OF COMPOSITES.
MANUFACTURE OF COMPOSITESPHB/PHV BASED COMPOSITES -- POLYGLYCOLIC ACID (PGA) AND POLYLACTIC ACID (PLA) BASEDCOMPOSITES -- POLYCAPROLACTONE (PCL) BASED COMPOSITES -- PEO BASED COMPOSITES -- HYDROGEL BASED POLYMER COMPOSITES -- COMPOSITES USED FOR SCAFFOLDS -- IN VITRO TESTING OF DEGRADATION BEHAVIOUR -- IN VITRO TESTING OF BIOCOMPATIBILITY -- IN VIVO TESTING OF COMPOSITES -- CLINICAL APPLICATIONS OF DEGRADABLE COMPOSITES -- CONCLUSION -- REFERENCES -- PRODUCT REALIZATION: THE PROCESSING OFBIOABSORBABLE POLYMERS -- ABSTRACT -- THE PROCESS OF PRODUCT REALIZATION -- CRITICAL PERFORMANCE CRITERIA -- Material Physical Properties Directly Affected by - -- Device "Delivery" -- Healing Response -- Wound "Environment" Issues -- Bioabsorbable Material Availability -- Manufacturability -- RAW MATERIAL -- POLYMER BLENDS AND COMPOSITES -- QUALITY ASSURANCE PROTOCOLS -- MELT PROCESSING -- MOLDED THREAD FORMS -- MACHINING -- CONCLUSION -- REFERENCES: -- ADDITIONAL REFERENCES: -- STERILIZATION OF BIODEGRADABLE POLYMERS -- ABSTRACT -- INTRODUCTION -- DEFINITIONS FOR STERILITY -- STERILIZATION METHODS PERFORMED FOR BIODEGRADABLEPOLYMERS AND COMPOSITES -- Steam Sterilization -- Dry Heat -- Gamma Irradiation -- Electron Beam Radiation -- Ethylene Oxide -- Plasma -- Ultraviolet Radiation -- EFFECT OF STERILIZATION METHODS ON DEGRADATION IN VITRO -- EFFECT OF STERILIZATION ON EMBEDDED ACTIVE AGENTS -- CONCLUSION -- REFERENCES -- SURFACE PROPERTIES OF DEGRADABLE POLYMERS -- ABSTRACT -- LIST OF ABBREVIATIONS -- INTRODUCTION -- THE BIOLOGICAL ENVIRONMENT CONDITIONS THE POLYMERSURFACE -- POLYMER SURFACE COMPOSITION -- POLYMER SURFACE CHARGE -- POLYMER SURFACE STRUCTURE -- POLYMER SURFACE WETTABILITY -- DEGRADATION MECHANISMS -- THE COHERENCE OF MATERIAL SURFACE PARAMETERS -- THE QUEST FOR THE IDEAL SURFACE -- FURTHER CHALLENGES IN DEVELOPING DEGRADABLE POLYMERS -- CONCLUSION.
REFERENCES -- BIODEGRADATION AND AUTOCATALYSIS OFPOLYLACTIDES -- 1. ABSTRACT -- 2. INTRODUCTION -- 3. PHYSICAL PROPERTIES OF PLA -- 4. BIODEGRADATION -- 4.1. Hydrolytic Degradation: -- 4.1.1. Factors Affecting Degradation -- 4.1.1.1. Polymer-Dependent Properties -- 4.1.1.1.1. Effect of Method of Polymerization and Presence of Oligomers -- 4.1.1.1.2. Autocatalysis -- 4.1.1.1.3. Effect of Polymer Crystallinity -- 4.1.1.1.4 Effect of Polymer Stereotacticity -- 4.1.1.2. Environmental Factors -- 4.1.1.2.1. Effect of Temperature: -- 4.1.1.2.2. Effect of Ionic Strength, Zeta Potential, and pH -- 4.1.1.3. Device-Related Factors -- 4.1.1.3.1. Geometry and Thickness of the Device: -- 4.1.1.3.2. Effect of the Method of Preparation of the Device: -- 4.1.2. Toxic Effects of Autocatalysis: -- 4.1.3. Degradation of PLA Devices in Vivo and Prevention of Autocatalysis: -- 4.2. Enzymatic Degradation: -- 4.3. Microbial Degradation: -- 5. SURFACE MODIFICATION OF PLA -- CONCLUSION -- REFERENCES -- BIOLOGICAL TESTING OF DEGRADABLE POLYMERSIN VIVO -- ABSTRACT -- INTRODUCTION -- DEGRADATION BEHAVIOUR IN VIVO -- TISSUE RESPONSE AND RESTORATION -- MECHANICAL STRENGTH -- CONCLUSION -- REFERENCES -- PART II: CLINICAL APPLICATIONS OF DEGRADABLEIMPLANTS -- FRACTURE REPAIR WITH BIO-RESORBABLEIMPLANTS -- ABSTRACT -- INTRODUCTION -- CLINICAL USE -- MATERIALS FOR BIO-RESORBABLE IMPLANTS -- DISTAL RADIUS -- OLECRANON -- HAND/CARPAL FRACTURES -- LATERAL/MEDIAL MALLEOLUS FRACTURE, RUPTURE OFSYNDESMOSIS -- EPIPHYSEAL FRACTURES -- CONCLUSION -- REFERENCES -- FIBULA REGENERATION AFTER VASCULARIZEDFIBULAR GRAFT HARVESTING -- 1. ABSTRACT -- 2. PATIENTS AND SURGICAL TECHNIQUE -- 2.1. Patients -- 2.2. Surgical Technique -- 2.2.1. Surgical Dissection -- 2.2.2. Reconstruction of the Fibula at the Donor Site -- 2.2.3. Postoperative Protocol -- 3. RESULTS -- 4. DISCUSSION.
4.1. Advantages of Free Vascularized Bone Graft -- 4.2. Adverse Effects of Harvesting Fibular Grafts -- 4.3. Regeneration of the Fibula Diaphysis -- 4.4. Conclusions and Future Developments -- ACKNOWLEDGEMENTS -- REFERENCES -- DEGRADABLE POLYMERS IN CRANIOMAXILLOFACIALSURGERY -- ABSTRACT -- INTRODUCTION -- SONICWELD®-SYSTEM -- CRANIOFACIAL SURGERY -- MIDFACIAL FRACTURES -- FRACTURES OF THE ORBITAL FLOOR -- MANDIBLE -- Fractures of the Mandibular Body -- Fractures of the Mandibular Condylar Process -- CONCLUSION -- REFERENCES -- ABSORBABLE MATERIALS IN SHOULDER SURGERY -- ABSTRACT -- BACKGROUND -- DIFFERENT IMPLANT MATERIALS AND COMPOSITIONS -- RADIOGRAPHIC FINDINGS AT THE SITE OF IMPLANTATION -- RADIOGRAPHIC CLASSIFICATION OF DRILL HOLES -- EARLY PROBLEMS AFTER IMPLANTING PGA CO-POLYMER IN THESHOULDER -- DOES THE MODE OF IMPLANTATION OF THE ABSORBABLEMATERIAL MATTER? -- DIFFERENCES BETWEEN FAST AND SLOW ABSORBING MATERIALS -- CLINICAL IMPLICATIONS -- THE FUTURE -- ACKNOWLEDGEMENTS -- REFERENCES -- DEGRADABLE POLYMERS IN HAND SURGERY -- ABSTRACT -- INTRODUCTION -- BIO-ABSORBABLE COMPOUNDS -- AVAILABLE IMPLANT DEVICES -- CLINICAL APPLICATIONS -- Distal Radius -- WRIST ARTHRODESIS -- SCAPHOID -- CARPUS -- METACARPAL / PHALANGEAL INJURIES -- Fracture Fixation -- Soft Tissue Injury -- COMPLICATIONS -- Immune Response -- Bacterial Infection -- CONCLUSIONS -- REFERENCES -- DEGRADABLE POLYMERS AS ACL SUBSTITUTES -- ABSTRACT -- ANTERIOR CRUCIATE LIGAMENT INJURY -- CURRENT TREATMENT MODALITIES -- TISSUE ENGINEERED ANTERIOR CRUCIATE LIGAMENTS -- LIGAMENT DESIGN CONSIDERATIONS -- ARCHITECTURE -- CELL SOURCES AND CELLULAR RESPONSE -- MECHANICAL PROPERTIES -- CURRENT RESEARCH AND DEVELOPMENT -- FUTURE OF TISSUE ENGINEERED LIGAMENTS -- REFERENCES -- FIXATION OF ACL GRAFTS WITH DEGRADABLEPOLYMER SCREWS -- ABSTRACT -- INTRODUCTION -- MECHANICAL RESULTS.
CLINICAL RESULTS -- INFLAMMATORY REACTIONS -- SCREW RESORPTION -- INTEGRATION AND OSTEOLYSIS -- CONCLUSION -- REFERENCES -- DEGRADABLE POLYMERS IN MENISCUSRECONSTRUCTION -- ABSTRACT -- ANATOMY OF THE MENISCUS -- DAMAGE TO THE MENISCUS -- CONSEQUENCES OF MENISCUS RESECTION -- REPAIR -- SCAFFOLD MATERIALS FOR MENISCUS REPAIR -- STIMULATION OF REPAIR BY ACCESS CHANNELS -- PARTIAL REPLACEMENT AFTER PARTIAL MENISCECTOMY -- COMPLETE REPLACEMENT OF MENISCUS -- NEW APPROACHES -- CONCLUDING REMARKS -- REFERENCES -- BIOABSORBABLE IMPLANTS: CERVICAL SPINE -- INTRODUCTION -- BIOMECHANICAL STUDIES -- CLINICAL APPLICATIONS -- Anterior Plating -- Interbody Spacers -- CONCLUSION -- REFERENCES -- DEGRADABLE POLYMERS IN THE LUMBAR SPINE -- ABSTRACT -- INTRODUCTION -- PRECLINICAL STUDIES -- CLINICAL APPLICATION -- REFERENCES -- PART III: INNOVATION AND FUTURE DEVELOPMENTS -- AREAS OF APPLICATIONS AND LIMITATIONS FORDEGRADABLE POLYMER IMPLANTS -- ABSTRACT -- INTRODUCTION -- APPLICATION AREAS AND EXAMPLES -- Dental Medicine -- Face and Skull Surgery -- Sport Medicine -- Traumatology -- Foot Surgery -- Spinal Surgery -- Bone Replacement Materials -- DESIGN CRITERIA AND RESTRICTIONS IN USINGRESORBABLE IMPLANTS -- Characteristics of Polylactide -- Crystallinity -- Creep Resistance -- Degradation -- pH Change -- Swelling of the Polymer -- CONCLUSION -- EXAMPLES OF NEW TECHNOLOGIES -- Biocomposite -- Bonewelding® -- Shape Memory Implants -- Resorbable X-ray Marker -- CONCLUSION AND OUTLOOK -- REFERENCES -- PERSPECTIVES AND POSSIBILITIES FORDEGRADABLE POLYMERS FORSKELETAL IMPLANTS -- ABSTRACT -- INTRODUCTION -- OVERVIEW OF COMMON BIODEGRADABLE POLYMERS -- CHALLENGES IN THE DEVELOPMENT OF DEGRADABLE POLYMERS -- CO-POLYMERS -- FUTURE OF BIODEGRADABLE POLYMER IMPLANTS -- CONCLUSION -- REFERENCES -- CONTRIBUTORS -- INDEX.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View