
Overland Flow and Surface Runoff.
Title:
Overland Flow and Surface Runoff.
Author:
Wong, Tommy S.W.
ISBN:
9781613247419
Personal Author:
Physical Description:
1 online resource (360 pages)
Series:
Hydrological Science and Engineering (Series Editor - Dr. Tommy S. W. Wong)
Contents:
CONTENTS -- PREFACE -- SCALE INVARIANCE AND SELF-SIMILARITY IN KINEMATIC OVERLAND FLOW IN SPACE AND TIME -- ABSTRACT -- INTRODUCTION -- MATHEMATICAL BASIS OF THE SCALING TRANSFORMATION AND SCALE INVARIANCE -- THE SCALE INVARIANCE OF THE KINEMATIC OVERLAND FLOW PROCESS -- Invariance-Conditions Due To the Governing Equation -- Invariance-Conditions Due To the Initial-Boundary Conditions -- Invariance-Conditions Due To the Additional Dependent Variable, i(x,t) in the Governing Equation: -- EXAMPLE PROBLEMS AND NUMERICAL APPLICATIONS -- Example Problem 1: -- Example Problem 2: -- Example Problem 3: -- CONCLUSION -- REFERENCES -- RECENT DEVELOPMENT IN STUDIES OF OVERLAND FLOW RESISTANCE -- ABSTRACT -- 1. DEFINITIONS AND FRAMEWORK -- 1.1. Overland Flow -- 1.2. Overland Flow Resistance -- 1.3. Framework of Overland Flow Resistance -- 1.4. Components of f under Different Conditions -- 2. DEVELOPMENT ON OVERLAND FLOW RESISTANCE -- 2.1. Flow Resistance on Plane Beds -- 2.1.1. Grain Resistance -- 2.1.2. Sediment Transport Resistance on Plane Beds -- 2.2 Flow Resistance on Rough Beds -- 2.2.1. Form Resistance -- 2.2.2. Wave Resistance -- 2.2.3. Sediment Transport and Bed Deformation on Rough Beds -- 2.3. Flow Resistance Models -- (1) Gilley and Finkler Model (1991) -- (2) Hirsh Model (1996) and Aebly's Validation(1998) -- (3) Lawrence Model (1997, 2000): -- (4) Barros Model (2001) -- (5) Takken and Govers Model (2002) -- (6) Hu and Abrahams Model (2006) -- 3. TOPICS FOR FUTURE STUDIES -- ACKNOWLEDGMENTS -- REFERENCES -- KINEMATIC WAVE FOR OVERLAND FLOW -- ABSTRACT -- 1. INTRODUCTION -- 1.1. Hydrologic Routing -- 1.2. Hydraulic Routing -- 2. BASIC PRINCIPLES -- 2.1. Dynamic Wave Model -- 2.2. Quasi Dynamic Wave Model -- 2.3. Diffusive Wave Model -- 2.4. Kinematic Wave Model -- 3. APPLICABILITY LIMIT OF KINEMATIC WAVE.
4. OVERLAND FLOW ON IMPERVIOUS SURFACE -- 5. OVERLAND FLOW ON PERVIOUS SURFACE -- 6. APPLICATION OF KINEMATIC WAVE TO NATURAL WATERSHED -- REFERENCES -- OVERLAND FLOW AND THE RUNON PROCESS -- ABSTRACT -- 1. INTRODUCTION -- 2. OVERLAND FLOW GENERATION -- 2.1. Saturation Overland Flow -- 2.2. Hortonian Overland Flow -- 3. RESISTANCE RELATIONSHIPS -- 4. GRADUALLY-VARIED UNSTEADY FLOW OVER A PLANE -- 5. APPROXIMATIONS TO THE SAINT-VENANT EQUATIONS -- 5.1. Kinematic Wave Approximation -- 5.2. Diffusion Wave Approximation -- 5.3. Gravity Wave Approximation -- 6. THE RUNON PROCESS AND LABORATORY STUDIES -- 7. SURFACE FLOW AND RUNON -- 7.1. Local Scale Model for Flow and Infiltration with Runon -- 7.2. Characterization of Spatial Variability of Saturated Hydraulic Conductivity -- 8. SURFACE AND SUBSURFACE SOLUTE TRANSPORT -- 9. SOIL EROSION -- 10. RUNON COMPUTATIONS AT THE WATERSHED SCALE -- 10.1. The Field-Scale Infiltration Component -- 10.2. The flow routing components -- 10.3. Application Results -- REFERENCES -- HILLSLOPE RUNOFF AND SOIL EROSION PROCESSES -- ABSTRACT -- ABBREVIATION -- 1. INTRODUCTION -- 2. HILLSLOPE RUNOFF -- 2.1. Overland Flow Generation Process -- 2.2. Hillslope Hydrological Budget -- 2.3. Calculation of Hillslope Runoff -- 2.4. Main Factors Affecting Hillslope Runoff -- 3. HILLSLOPE SOIL EROSION -- 3.1. Hillslope Soil Erosion Patterns and Processes -- 3.2. Hillslope Soil Erosion Modeling -- a) Empirical Erosion Models -- b) The Process-Based Erosion Models -- 4. MITIGATION AND CONTROL OF HILLSLOPE SOIL EROSION -- REFERENCES -- EFFICIENCY OF OVERLAND FLOW AND EROSION MITIGATION TECHNIQUES AT RIBEIRA SECA, SANTIAGO ISLAND, CAPE VERDE -- ABSTRACT -- INTRODUCTION -- The Traditional Soil and Water Conservation Techniques -- Sustainable Livelihoods -- CAPE VERDE -- Tackling Adversity.
Soil and Water Conservation Strategies, Techniques and Practices -- Soil and Water Conservation Techniques at Slope: -- Contour Stone Wall -- Contour Furrows (Ridges) -- Terraces -- Afforestation -- Methodology -- RESULTS -- Soil Resistance to Penetration -- Rock Outcrops and Stones -- Organic Matter Cover -- Vegetation Cover -- Erosion Index -- Accumulation Index -- CONCLUSION -- REFERENCES -- SIMULATE SURFACE RUNOFF USING COUPLED SURFACE-SUBSURFACE MODELS -- ABSTRACT -- INTRODUCTION -- WASH123D: A COUPLEDSURFACE-SUBSURFACE MODEL -- BILOXI WATERSHED SIMULATION: A DEMONSTRATION EXAMPLE -- RESULTS AND DISCUSSIONS -- Comparison between 1-D and Coupled 1-D/2-D Simulations -- Comparison between Coupled 1-D/2-D and Coupled 1-D/2-D/3-D Simulations -- Channel Roughness Effect -- Overland Roughness Effect -- Subsurface Heterogeneity Effect -- Groundwater Boundary Condition Effect -- Soil Curve Effect -- CONCLUSION -- ACKNOWLDGMENTS -- REFERENCES -- OVERLAND FLOW, SURFACE FLOW AND SURFACE/GROUND WATER INTERACTIONS -- ABSTRACT -- INTRODUCTION -- OVERLAND FLOW -- 1. Overland Flow Governing Equations -- 1.1. Analytical Solution for the Kinematic Wave Model -- 1.2. Analytical Solution for the Diffusion Wave Model -- 2. Surface Pollutant Accumulation and Washoff -- 3. Overland Flow Numerical Solutions -- 3.1. Implicit Finite Difference Formulations -- 3.2. MacCormack Finite Difference Formulation -- 3.3. Application to Synthetic Example -- CHANNEL FLOW -- 4. Channel Flow Governing Equations -- 5. Channel Flow Numerical Solutions -- 5.1. Implicit Finite Difference Formulations -- 5.2. MacCormack Finite Difference Formulation -- 5.3. Environmental Protection Agency Storm Water Management Model (EPA SWMM) -- 5.4. Application to Duke University Campus Watersheds -- SURFACE/GROUND WATER INTERACTIONS -- 6. Contaminant Transport in Streams.
6.1. Transient Storage Model by Bencala and Walters -- 6.2. Transient Storage Model by Kazezyılmaz-Alhan and Medina -- 6.3. Application -- 6.4. Conjunctive Stream-Aquifer Solute Transport Model -- 6.4.1. Governing Equations for Flows and Mass Transport -- 6.4.2. Application -- 7. Wetland Hydrology and Water Quality Modeling (WETSAND) -- 7.1. Model Development -- 7.2. Application to Duke University Restored Wetland Site -- CONCLUSION -- REFERENCES -- INTERPRETATION OF OVERLAND FLOW ASSOCIATED WITH INFILTRATION DEVICES PLACED IN BOULDER CLAY AND CONSTRUCTION FILL -- ABSTRACT -- 1.0. INTRODUCTION -- 2.0. GENERAL PRINCIPALS -- 2.1. Assessment of Recharge to an Infiltration Device -- 2.2. Infiltration Rate -- 2.2.1. Driving Force: Infiltration Device Base -- 2.2.2. Driving Force: Infiltration Device Upper Surface -- 2.2.3. Driving Force: Infiltration Device Sides -- 2.2.4. Infiltrating Volume -- 2.2.5. Boulder Clay Permeability -- 2.2.6. Boulder Clay Cation Exchange -- 2.2.7. Permeability Measurement -- 2.2.8. Infiltration Modelling -- 2.2.9. Experimental Modelling -- 2.3. Overland Flow -- 2.3.1. Overland Flow Associated with Inadequate Storage -- 2.3.2. Infiltration Assumptions: Permeable Sediments -- 2.3.3. Infiltration Assumptions: Boulder Clay -- 2.4. Boulder Clay Permeability -- 2.4.1. Macropores/Natural Pipes -- 2.4.2. Vertical Surge Shafts -- 2.4.2.1. Longevity of Vertical Surge Shaft Discharge Locations -- 2.4.2.2. Features Associated with Vertical Surge Shafts -- 3.0. PORO-ELASTIC FLOW MODELLING OF INFILTRATION -- 3.1. Total Pressure Load -- 3.2. Flow Cycle -- 3.2.1. Modelling Infiltration, Water Levels and Overland Flow -- 3.2.2. Modelling the AWC: Infiltration Device Design Parameters -- 3.2.3. Modelling the AWC: Uniform Recharge -- 3.2.4. Modelling the AWC: Uniform Recharge, Varying ΔPMacro.
3.2.5. Modelling the AWC: Uniform Recharge, Type A Overland Flow -- 3.3. Consideration of Runoff Profile -- 3.3.1. Modelling Type A Overland Flow -- 3.3.2. Modelling Type B Overland Flow -- 3.3.3.Modelling Type C and D Overland Flow -- 3.4. Time Series Modelling -- 3.5. UK Design Scenario -- 4.0. GROUNDWATER MOUND MODELLING: BOULDER CLAY -- 4.1. Integration of October 2005 Modelling with Overland Flow Observations -- 4.2. Principal Macropore Conduit Zones -- 4.3. Interpretation of Overland Flow Water Colour -- 4.4. Reactivated Vertical Surge Shafts -- 4.5. Volume of Overland Flow -- 4.6. Groundwater Mound Size and Shape -- 4.6.1. Mound Cross-Section: Dupuit Model -- 4.6.2. Groundwater Mound Cross-Section: Pressure Loss Modelling -- 5.0. EVOLUTION OF OVERLAND FLOW WITH TIME -- 5.1. 1998 - August 2000 -- 5.2. August 2000 - July, 2001 -- 5.3. Late 2001 -- 5.4. Early 2002 to September, 2009 -- 6.0. REMEDIAL SOLUTIONS -- CONCLUSION -- REFERENCES -- REVIEW OF HYDROLOGIC PROCESSES AND TRANSPORT OF POLLUTANTS OPERATED BY STORMWATER RUNOFF IN URBAN ENVIRONMENT -- ABSTRACT -- 1. INTRODUCTION -- 2. STORMWATER RUNOFF IN THE URBAN ENVIRONMENT: WATER QUALITY ISSUE -- 2.1. Runoff Quality from Road Surfaces and Transport Infrastructures -- 2.2. Runoff Quality from Roof Surfaces -- 2.3. Dry and Wet Atmospheric Depositions -- 3. POLLUTANT MASS DELIVERY BEHAVIOUR: THE FIRST FLUSH PHENOMENON -- 4. THE WASH-OFF PROCESS -- THE IMPACT ON THE RECEIVING WATER BODY: IMPLICATION FOR TREATMENT -- CONCLUSION -- REFERENCES -- AMMONIA OXIDATION AND THE CORRESPONDING BACTERIAL COMMUNITIES IN TWO OVERLAND FLOW AREAS TREATING LANDFILL LEACHATE OR WASTEWATER -- ABSTRACT -- INTRODUCTION -- MATERIAL AND METHODS -- Site Description -- Sampling -- DNA Extraction and PCR Amplification.
Analysis of PCR Products by Denaturing Gradient Gel Electrophoresis, Nucleotide Sequencing and Phylogenetic Analysis.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View