Cover image for Applied Physics in the 21st Century (Horizons in World Physics. Volume 269).
Applied Physics in the 21st Century (Horizons in World Physics. Volume 269).
Title:
Applied Physics in the 21st Century (Horizons in World Physics. Volume 269).
Author:
Valencia, Raymond P.
ISBN:
9781616687960
Personal Author:
Physical Description:
1 online resource (628 pages)
Series:
Horizons in World Physics ; v.269

Horizons in World Physics
Contents:
APPLIED PHYSICS IN THE 21ST CENTURY: (HORIZONS IN WORLD PHYSICS, VOLUME 269) -- APPLIED PHYSICS IN THE 21ST CENTURY: (HORIZONS IN WORLD PHYSICS, VOLUME 269) -- CONTENTS -- PREFACE -- Chapter 1 BOSE-EINSTEIN CONDENSATION IN NONLINEAR SYSTEM -- Abstract -- I. Introduction -- II. General Form of Total Energy -- 2.1. Unitary Transformation -- 2.2. Galilean Covariant Form of Total Energy -- 2.3. Exact Form of Total Energy in a One-Dimensional System -- 2.4. Calculation of Single Excitation Energy in Liquid Helium -- 2.5. Determination of Galilean Invariant Term in Energy Using Experimental Data -- III. Temperature Dependence of the Excitation Energy -- 3.1. Dressed Boson Distribution -- 3.1.1. Case of λTT -- 3.2. Integral Equation for Determining Dressed Boson Energy -- 3.2.1. Integral Equation -- 3.2.2. Approximate Solution in the First Order -- 3.2.3. Approximate Solution in Higher Order -- IV. Calculation of Entropy -- 4.1. Evaluation using Iteration Method -- 4.2. Traditional Theories -- 4.2.1. Landau Theory -- 4.2.2. BCY Theory -- 4.2.3. BD Theory -- V. Specific Heat -- 5.1. Various Calculation Methods -- 5.1.1. Calculation of Specific Heat using Landau Theory -- 5.1.2. Calculation of Specific Heat using BCY Theory -- 5.1.3. Calculation of Specific Heat Using BD Theory -- 5.2. Evaluation for T<2.15 Using the Iteration Method -- 5.3. Logarithmic Divergence of Specific Heat at the λ Point -- 5.4. Dressed Boson Energy near the λ Point -- 5.5. Origin of the Logarithmic Divergence in Specific Heat -- 5.6. Evaluation of Specific Heat in Nonlinear Theory near the λ Point -- VI. Bose-Einstein Condensate of Dressed Bosons -- 6.1. Number of Condensed Dressed Bosons near the λ Point -- 6.2. Critical Index of Condensed Dressed Boson Number near the λ Point -- 6.3. No Friction against Macroscopic Body.

VII. λ Transition and Phase Diagram -- 7.1. Transition Temperature of Bose-Einstein Condensation -- 7.2. λ Transition Temperature in Landau Theory -- VIII. Two-Fluid Mechanism Caused by Nonlinear Energy Form -- 8.1. Determination of the Distribution Function of the Dressed Bosons -- 8.2. Explanation of Level Inversion -- 8.3. Various Values of Momentum at which Dressed Bosons Ccondense -- 8.4. Iteration Method -- IX. Properties of the Solutions -- 9.1. Existence of the λ Transition -- 9.2. Superfluidity -- 9.3. Coexistence of Two Interpenetrating Fluids (Why Are the Two Fluid-States so Stable?) -- 9.4. Zero Entropy of the Superfluid Component -- 9.5. Galilean Covariance of the Distribution Functions -- X. Contribution of Dressed Bosons in Several Phenomena -- 10.1. London's Relation in the Fountain Effect -- 10.2. Refraction and Reflection of the Dressed Boson Beam at a Gas-Liquid Boundary -- XI. Thermodynamic Functions -- XII. Discussion and Conclusions -- 12.1. Width of Elementary Excitation Energy -- 12.2. Temperature Gap Appearing in Rotating Superfluid Helium: (Temperature Dependence of Critical Velocity) -- 12.3. A.C. Josephson Effect in Superfluid Helium -- Conclusion -- Acknowledgments -- Appendix I -- Appendix II -- Appendix III -- Mathematica Program 1 (Determination of nonlinear term) -- Mathematica Program 2 (Approxmation in second order) -- Mathematica Program 3 (Calculation of entropy) -- Mathematica Program 4 (Calculation of specific heat for 0.2-2.15K) -- Mathematica program 5 (Calculation of specific heat near the λ point) -- References -- Chapter 2NEW ASPECTS OF RELAXATION PROCESSESIN CRYOGENIC SOLIDS -- Abstract -- 1. Introduction -- 2. Experimental Techniques -- 2.1. Electron Cyclotron Resonance -- 2.2. Activation Spectroscopy -- 3. Evidence of "Giant" Electron Emission From Rare-GasSolids: ECR Studies.

4. Surface Effects on the Electron Emission and a Modelof "Active" Surface Sites -- 5. Post-irradiation Emission of Electrons and Photons -- 6. Relaxation Channels: Branching and Interconnection -- 7. Conclusion -- Acknowledgemnts -- References -- Chapter 3 INDUCTION TRANSFORMER COUPLED DISCHARGES: INVESTIGATION AND APPLICATION -- Abstract -- Introduction -- 1. Transformer Coupled Toroidal Discharges: Main Principles -- 1.1. Principle of Operation of Transformer Coupled Toroidal Discharges -- 1.2. Optimization of the Transformer Coupled Toroidal Discharge -- 1.3. Matching the Power Source and the Transformer Coupled Toroidal Discharge -- 2. Transformer Plasmatrons -- 2.1. Experimental Setup -- 2.2. Electric-Physical and Thermal-Physical Characteristics of Transformer Plasmatrons -- 2.3. Thermal Production of Ozone in Plasma of Transformer Coupled Toroidal Discharge -- 2.4. Synthesis of Nitrogen Monoxide in Plasma of the Transformer Coupled Toroidal Discharge -- 2.5. Natural Gas Processing in Plasma of Transformer Coupled Toroidal Discharge -- 3. Transformer Light Sources -- 3.1. Experimental Setups -- 3.2. Transformer Coupled Toroidal Discharge in Mercury Vapour -- 3.3. Transformer Coupled Toroidal Discharge in Neon -- Conclusions -- References -- Chapter 4P-TYPE INGAAS/ALGAAS QUANTUM WELLSTRUCTURES FOR INFRARED PHOTODETECTION -- Abstract -- 1. Introduction -- 2. Theoretical Review -- 2.1. Quantum Well Physics -- 2.2. Intersubband Transition in Quantum Wells -- 2.2.1. Integrated Absorption Strength for n-Type Quantum Wells -- 2.2.2. Intersubband Transition Occurred in the p-Type Quantum Wells -- 3. P-doped GaInAs/AlGaAs Strained MQW Structures -- 3.1. Sample Growth -- 3.2. Band Offset Determination -- 3.3. Photoluminescence Measurements -- 3.3.1. Concentration Dependence of Band Gap -- 3.3.2. PL Intensity and Linewidth at Various Temperatures.

3.4. Structural Properties -- 3.4.1. Bragg Reflection Rocking Curves -- 3.4.2. Average Mismatch -- 3.4.3. Period of MQWs -- 3.4.4. Line-Width of the Zero-Order Peak -- 3.4.5. Intensity of the First Order Peak -- 3.4.6. Simulation Results -- 3.4.7. Transition Electron Microscopy -- 3.5. Intersubband Absorption of the p-type GaInAs/AlGaAs MultipleQuantum Wells -- 3.5.1. Theoretical Approach -- 3.5.2. Six-Band k⋅p Model and Transfer Matrix Method -- 3.5.3. Calculated Energy Levels and Intersubband Transition at Various Conditions -- A. Constant Compressive Strain -- B. Doping Induced Bandgap Narrowing Plus Constant Compressive Strain -- C. Strain and Barrier Variations with Doping -- 3.5.4. Experimental Results and Comparison with the Calculated Values -- 4. Quantum Well Infrared Photodetectors -- 4.1. Device Fabrications -- 4.2. Dark Current -- 4.2.1. Background -- 4.2.2. Dark Current of p-Type GaInAs/AlGaAs MQW Structures -- 4.3. Performance of QWIP Devices -- 5. Conclusion -- Acknowlegments -- References -- Chapter 5 A D-3HE SPHERICAL TOKAMAK REACTOR WITH THE PLASMA CURRENT RAMP-UP BY VERTICAL FIELD -- Abstract -- 1. Introduction -- 2. Formalism for Ignition Control -- 2.1. Zero-Dimensional Particle Balance Equations -- 2.2. Zero-Dimensional Power Balance Equations -- 2.3. Control Algorithm of the Fusion Power and the Heating Power -- 2.4. Machine Parameters and Plasma Cross Section in Final ST -- 2.5. Poloidal Coil Layout -- 3. Calculated Results on D-3He Ignition -- 3.1. Reference Ignition Scenarios with the Plasma Current Ramp-up -- 3.2. The Relation of the Ion to Electron Temperature Ratio, the Ion and Electron Confinement Time, and the Fusion Power Fraction to Ions -- 3.3. Low Wall Reflectivity -- 3.4. Long Particle Confinement -- 3.5. Low Neutron Power Operation Mode -- 3.6. Shutdown of D-3He Discharge.

3.7. Long Time Behavior of the D-3He Discharge -- 3.8. New Operation Scenario of Quasi-Continuous Cyclic DC Operation -- 4. Various Issues in a D-3He ST Reactor -- 4.1. External Heating Power -- 4.2. Heat Flux to the First Wall -- 4.3. Heat Flux to the Divertor -- 4.4. Tritium Production -- 4.5. Plasma Energy and Disruption Effects -- 4.6. Shafranov Shift Effect -- 4.7. Energy Transfer Fraction to Ions -- 4.8. Prompt Fusion Product Loss -- 4.9. Other Scaling -- 4.10. On Pioneering Works -- 5. Summary -- Appendix -- A.1. Zero-Dimensional Power Balance Equations -- A.2. Confinement Scaling -- A.3. Control Algorithm of Fueling and Fuel Ratio -- A.4. Control Algorithm of the Heating Power Based on the H-mode -- A.5. Plasma Circuit Equation with Vertical Field Coils and Divertor Coils -- References -- Chapter 6 5-DIMENSION SPACE-TIME FIELD THEORY AND REALIZATION OF MATTER -- Abstract -- 1. Introduction -- 2. Extension from 4D Space-Time to 5D Space-Time -- 3. The 5D Energy-Momentum Space and Its Projections -- 4. The 5D Bosonic Field Equations -- 5. The Fermionic Spinor Field Equations -- 6. Some Speculative Remarks on the 5D Vector Field -- 7. Conclusions -- Acknowledgments -- Appendix A -- References -- Chapter 7CHEMICAL PHYSICS OF PHONONS ANDSUPERCONDUCTIVITY: AN HEURISTIC APPROACH -- Abstract -- I. Superconductivity and the Gas Laws -- II. Superconductivity and the Electron-Phonon CouplingParameter, λ -- III. Superconductivity and the Morse Potential & Badger'sRule -- References -- Chapter8DESCRIPTIONOFTHEULTRASLOWLIGHTPHENOMENONINATOMICBOSECONDENSATESINTHEFRAMEWORKOFTHEMICROSCOPICAPPROACH -- Abstract -- 1.Introduction -- 2.ResponseofaGasofHydrogenlikeAtomstoPerturbationbyanExternalElectromagneticField -- 2.1.HamiltonianofHydrogenlikeAtomicGasinanExternalElectromagneticField -- 2.2.Green-FunctionsFormalism.

2.3.PermittivityofHydrogenlikeAtomicGas.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: