
Piezoceramic Materials and Devices.
Title:
Piezoceramic Materials and Devices.
Author:
Parinov, Ivan A.
ISBN:
9781617289583
Personal Author:
Physical Description:
1 online resource (349 pages)
Series:
Materials Science and Technologies
Contents:
Library of Congress Cataloging-in-Publication Data -- Dedication -- Contents -- Preface -- Lead-Free Long Ago -- Abstract -- 1. Introduction -- 2. Dielectric and Piezoelectric Properties of NaNbO3-Based Solid Solutions -- 3. Crystal-Chemical Effects of Thermodynamic History on Composition-Temperature Phase Diagrams of (Na, Li)NbO3 and (Na, K)NbO3 Solid Solutions -- 4. Modification of (Na, Li)NbO3 Solid Solutions with Heterovalent Cations -- 4.1. Solid Solutions with nMA > nA (SS-1 And SS-2) -- 4.2. Solid Solutions with nMB nB (SS-4 And SS-5) -- 5. The Phase Diagram and Properties of Solid Solutions of the Ternary Sodium-Lithium-Potassium Niobate System -- 6. Phase Diagrams and Ferroelectric Properties of Solid Solutions of the Ternary Systems (Na, Li, Cd0.5)NbO3 and (Na, Li, Sr0.5)NbO3 -- 6.1. Solid Solutions of the (Na, Li, Cd0.5)NbO3 System -- 6.2. Solid Solutions of the (Na, Li, Sr0.5)NbO3 System -- 7. Production and Dielectric Properties of Lead-Free Ceramics with the Formula -- [(Na0.5K0.5)1 - xLix](Nb1 - y -zTaySbz)O3 -- 7.1. Objects of Investigation -- 7.2. Methods of Sample Production -- 7.3. Methods of Sample Analysis -- 8. Deformation, Polarization, and Reversible Properties of Lead-Free Ceramics Based on Alkali Metal Niobates -- 9. Conclusions -- References -- High Performance of Advanced Composites Based on Relaxor-Ferroelectric Single Crystals -- Abstract -- 1. Introduction -- 2. Relaxor-Ferroelectric Solid Solutions and their Electromechanical Properties -- 3. Composites with 2-2-Type Connectivity and their Performance -- 3.1 2-2 Parallel-Connected Composite Based on PZN-0.07PT: Effect of the Orientation of Crystallographic Axes -- 3.2 2-2-0 Composite Based on PZN-0.07PT: Effect of Porosity in Polymer Layers.
3.3 2-2 Composite Based on PZN-0.07PT: Illustrative Example of Combination of Electromechanical Properties -- 3.4 2-2 Composite Based on PMN-0.33PT: Key Role of the Single-Domain State -- 4. The 1-3-Type Composites and their Performance -- 4.1 Maxima of Effective Parameters of 1-3-Type Composites -- 4.2 Piezoelectric Response of 1-2-2 Composites -- 5. Comparison of the Performance of Ferroelectric Ceramic / Polymer Composites -- Conclusion -- Acknowledgments -- References -- Ceramic Piezocomposites: Modeling, Technology, and Characterization -- Abstract -- 1. Introduction -- 2. Microstructural Design Concept for Polycrystalline Composite Materials -- 2.1. MSD Concept Content -- 2.2. Some Examples of MSD Concept Realization -- 3. Impedance Spectroscopy Characterization of Highly Attenuating Piezocomposites -- 3.1. Piezoelectric Resonance Analysis Methods -- 4. Porous Ferroelectric Ceramics -- 4.1. Porous Piezoceramics: Porosity Origin and Microstructure -- 4.2. Fabrication Methods -- 4.3. Measurement Methods -- 4.4. Porous Piezoceramics Modeling -- 4.5. Unit Cell Models -- 4.6. Percolation Models -- 4.7. Fractal Analysis -- 4.8. Finite Element Modeling (FEM) -- 4.9. Experimental Data -- 4.10. Full Set of Material Constants -- 5. Lead Titanate and Lead Metaniobate Porous Ferroelectric Ceramics -- 5.1. Porous Ceramic Preparations -- 5.2. Results and Discussion -- 6. Ceramic Piezocomposites Pzt/(-Al2O3 -- 6.1. "Damping by Scattering" Approach -- 6.2. Methods of Experimental Preparation -- 6.3. Method of Measurement -- 6.4. Results and Discussion -- 7. Dielectric, Piezoelectric and Elastic Properties of Pzt/Pzt Ceramic Piezocomposites -- 7.1. Experimental Procedures -- 7.2. Methods of Measurement -- 7.3. Results and Discussion -- 8. Optimization of Finite Element Models for Porous Ceramic Piezoelements by Piezoelectric Resonance Analysis Method.
8.1. Method of Measurements -- 8.2. FEM Calculations and Optimization Procedure -- 8.3. Results and Discussion -- 8.4. Full Set of Complex Material Constants -- 8.5. FEM Results -- 9. Simulation of Ultrasonic Wave Propagation in Non-homogeneous Anisotropic Ceramic Composites -- 9.1. Experimental Scenario -- 9.2. Methods of Measurements -- 9.3. Simulations Algorithm -- 9.4. Results and Discussion -- 9.4.1. Ultrasonic Measurements -- 9.4.2. Resonance Measurements and Wave Pro Simulations -- Conclusion -- References -- Some Finite Element Methods and Algorithms for Solving Acoustopiezoelectric Problems -- Abstract -- 1. Introduction -- 2. Acoustopiezoelectric Problem Statements and Finite Element Approximations -- 2.1. Classical and Weak Formulations for Piezoelectric Problems -- 2.2. Modal Problems: Mathematical Properties and Some Theorems about Eigenfrequencies -- 2.3. Finite Element Approximations for Piezoelectric Problems -- 2.4. Acoustic Media with Dissipation Modelling -- 2.5. Finite Element Modelling for Coupled Piezoelectric and Acoustic Media -- 3. Algorithms for Piezoelectric Finite Element Analysis -- 3.1. The Newmark Scheme for Solving Transient Problems -- 3.2. Harmonic and Static Finite Element Analysis -- 3.3. Some Algorithms for Modal Analysis -- 3.4. Some Algorithmic Features of Practical Implementation -- 4. Finite Element Modelling of Piezoelectric Devices with Gyration And Temperature Effects -- 4.1. Introduction -- 4.2. Analysis of the Vibratory Gyroscope with Rotation Effects -- 4.3. Analysis of The Gyroscope with Temperature Effects -- Acknowledgments -- References -- Identification of Effective Properties of the Piezocomposites on the Basis of Finite Element Method (FEM) Modeling with ACELAN -- Abstract -- 1. Introduction -- 2. Continual and Finite-Element Problem Statements.
2.1. Continual Statement of Problem of the Acoustic Electric Elasticity -- 2.1.1. FEM Formulation -- 2.1.2. FEM Systems for Different Types of Problems -- 2.2. Development of Electrostatic Elements in ACELAN Software for Porous Electric Elastic Media. Finite-Element Modeling of Composite Materials with Irregular Structure, and Visualization of the Control Process of Pore Distribution in Composites with ... -- 3. Finite-Element Modeling of Composite Materials with Irregular Structure and Visualization of Control Processes of Pore Distribution in Composites With Irregular Structure -- 4. Estimation of Effective Modules -- Acknowledgments -- References -- Toughening Mechanisms and Fracture Resistance of Ferroelectric Materials -- Abstract -- 1. Introduction -- 2. Toughening Mechanisms of Ceramics and Composites -- 2.1. Bending of Crack Front -- 2.2. Change of Crack Trajectory -- 2.3. Microcracking During Ceramic Processing -- 2.4. Microcracking in the Stress Field of a Macrocrack -- 2.5. Interaction of Macrocrack with Microdefects -- 2.6. Crack Branching -- 2.7. Crack Bridging -- 2.8. Ceramic Toughening by Plastic Phase -- 2.9. Transformation Toughening -- 2.10. Effects of Re-Construction of Domain Structure in Ferroelectrics and Ferroelastics -- 3. PZT Ceramic Sintering and Microcracking During Cooling and Poling -- 4. Macrocrack Shielding Due to Phase Transformations Near the Crack -- 5. Influence of Domain Switching Near the Crack on Fracture Toughness -- Conclusions -- Acknowledgments -- References -- Active and Passive Vibration Control of Aircraft Composite Structures Using Power Piezoelectric Patch-Like Actuators -- Abstract -- Abbreviations -- 1. Introduction -- 2. Full Sized Rotor Blade and Scaled Blade Model: Some Considerations on the Dynamic Similarity -- 3. Bimorph and Unimorph Flexure Actuators.
4. Torsion Deformation Produced by Unimorph Actuators -- 5. Harmonically Excited PZT Patch - 1D Model -- 6. Transient Analysis of Composite Spar with Embedded -- Piezoelectric Patches - 3D FEM Model -- 7. Transient Analysis of Composite Spar Blade with Embedded Piezoelectric Patches -Scaled Physical Model -- Conclusion -- References -- Index -- Blank Page.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View