
Advanced Materials and Systems for Energy Conversion : Fundamentals and Applications.
Title:
Advanced Materials and Systems for Energy Conversion : Fundamentals and Applications.
Author:
Gan, Yong X.
ISBN:
9781612098098
Personal Author:
Physical Description:
1 online resource (217 pages)
Series:
Energy Science, Engineering and Technology
Contents:
ADVANCED MATERIALS AND SYSTEMSFOR ENERGY CONVERSION:FUNDAMENTALS AND APPLICATIONS -- ADVANCED MATERIALS AND SYSTEMS FOR ENERGY CONVERSION: FUNDAMENTALS AND APPLICATIONS -- Contents -- Preface -- About the Author -- Acknowledgment -- Energy Conversion Fundamentals -- 1.1. Thermoelectrics -- 1.1.1. Seebeck Effect -- 1.1.2. Thermoelectric Power -- 1.1.3. Peltier Effect -- 1.1.4. Thomson Effect -- 1.1.5. The Thomson Relationships -- 1.1.6. Advantages of Thermoelectric Energy Conversion -- 1.1.7. Energy Conversion Efficiency -- 1.2. Photovoltaic Energy Conversion -- 1.3. Mechanoelectric Energy Conversion -- 1.4. Electrochemical Energy Conversion -- 1.4.1. Historical Background -- 1.4.2. Fuel Cell Structure -- 1.4.3. Fuel Cell Classification -- 1.4.4. Materials for Solid Oxide Fuel Cells -- References -- Nanomaterials Processing andManufacturing -- 2.1. Introduction -- 2.2. Nanomaterials and Processes -- 2.2.1. Bottom-up and Top-down Approaches -- 2.2.2. Dendrimers and Processes -- 2.2.3. Nanomaterials clusters and Arrays in Zeolites -- 2.2.4. Synthesis of Nanomaterials through Arrested Precipitation -- 2.2.5. Self-assembled Nanoscale Materials and Structures -- 2.3. Nanoscale Device and System Concept -- 2.4. Nanomaterials Processing and Manufacturing Techniques -- 2.4.1. Chemical Approaches -- Solution Method: Liquid Phase Deposition -- Chemical Vapor Deposition -- Vapor-Liquid-Solid Growth -- 2.4.2. Laser-Assisted Catalytic Growth -- 2.4.3. Electrochemical Approaches -- Electrochemical Oxidization -- Electrochemical Etching -- Electroplating -- Electrocodeposition -- 2.4.4. Template Approach -- AAO Template -- Other Templates -- 2.4.5. Lithography -- Conventional Photolithography -- Soft Lithography and Nanoimprinting -- Near Field/Edge Lithographic Patterning Techniques -- Electron Beam Lithography -- Scanning Probe Lithography.
2.4.6. Electrospinning -- 2.5. Applications -- 2.5.1. Fuel Cell Electrodes -- 2.5.2. Advanced Catalysts and Nanoreactors -- 2.6. Concluding Remarks -- References -- Electroplating ThermoelectricEnergy Conversion Nanomaterials -- 3.1. Introduction -- 3.2. Materials and Experimental Methods -- 3.3. Results and Discussion -- 3.3.1. Electrochemical Dealloying of Copper from the Cu-Zn Alloy -- 3.3.2. Electrodeposition of BiTe Alloy -- 3.3.3. Thermoelectric Property Characterization -- 3.4. Concluding Remarks -- References -- Thermal Photovoltaic EnergyConversion Nanomaterialswith Fractals -- 4.1. Introduction -- 4.2. Background -- 4.3. Materials and Manufacturing Processes -- 4.3.1. Synthesis of Nanostructured Fractals -- Preparation of Fractal Templates -- Thin Film Deposition and Fractal Pattern Transfer -- Sol-gel Deposition of Oxide TE-PV Nanomaterials -- Nanocomposite Fabrication and Packaging -- 4.4. Structure and Property Characterization -- 4.5. Modeling Phonon Damping in Fractals -- 4.6. Applications and Ongoing Research -- References -- Nanoporous Materials forElectrochemical Energy Conversion -- 5.1. Introduction -- 5.2. Background -- 5.3. Materials and Experimental Methods -- 5.3.1. Materials -- 5.3.2. Experimental Setup -- 5.3.3. Electrochemical Dealloying -- 5.3.4. Electrocatalytic Property Characterization -- 5.4. Results and Discussion -- 5.4.1. Morphology of Nanopores and Elemental Analysis -- 5.4.2. Cyclic Voltammograms of Electrochemical Dealloying -- 5.4.3. Effect of Nanopores on Catalytic Oxidation Behaviors -- 5.4.4. Effect of Metal Type on Catalytic Oxidation Behaviors -- 5.4.5. Catalytic Oxidation Behaviors during Reversed Scan -- 5.4.6. Effect of Fermentation -- 5.4.7. Fabrication of Biofuel Cells -- 5.5. Concluding Remarks -- References -- Nanostructured Materials forElectrical/Mechanical EnergyConversion -- 6.1. Introduction.
6.2. Background -- 6.3. Materials Design and Manufacturing Processes -- 6.3.1. Preparation of Self-assembled Nanopores -- 6.3.2. Deposition of Metallic Nanofiber Arrays -- 6.3.3. Thermal Evaporation of Thin Films on Nanofiber Arrays -- 6.3.4. Etching and Assembling the Nanoarchitecured Energy Converters -- 6.3.5. Nanoporous Polymers for Micro/Nanoscale Energy Converter Fabrication -- 6.4. Microstructure Analysis -- 6.5. Sensitivity of the Energy Converter -- References -- Deformation of Porous Fuel CellElectrode at High Temperatures -- 7.1. Introduction -- 7.2. Modeling -- 7.3. Review of Crystal Plasticity Theory -- 7.3.1. Kinematics and Constitutive Laws -- 7.3.2. Rate-Dependent Plasticity -- 7.4. Numerical Simulation -- 7.4.1. Finite Element Formulation -- 7.5. Results and Discussion -- 7.5.1. Stress Solutions -- 7.5.2. Internal Pressure Solution -- 7.5.3. Strain Solutions -- 7.5.4. Solutions to Crystal Lattice Rotation -- 7.5.5. Effect of Loading Level -- 7.5.6. Stresses along Different Paths -- 7.5.7. Yield Surface -- 7.6. Concluding Remarks -- References -- Index.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View