
Computer Search Algorithms.
Title:
Computer Search Algorithms.
Author:
Salander, Elisabeth C.
ISBN:
9781612090436
Personal Author:
Physical Description:
1 online resource (207 pages)
Series:
Computer Science, Technology and Applications
Contents:
COMPUTER SEARCH ALGORITHMS -- COMPUTER SEARCH ALGORITHMS -- CONTENTS -- PREFACE -- LIVE SOFT-MATTER QUANTUM COMPUTING -- ABSTRACT -- INTRODUCTION -- EVOLUTIONARY TRANSITIONS, CONFLICT MEDIATION, AND QUANTUM MECHANICS -- QUANTUM CELL BIOLOGY AND CELLULAR DECISION MAKING -- MICROBIAL INTELLIGENCES AND LIVE, SOFT MATTER QUANTUM COMPUTING -- DIRECTIONS FOR FUTURE RESEARCH AND DEVELOPMENT OF BIOTECHNOLOGIES -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- STUDYING DIFFERENT HEURISTIC SEARCHES TO SOLVE A REAL-WORLD FREQUENCY ASSIGNMENT PROBLEM -- ABSTRACT -- INTRODUCTION -- THE FREQUENCY PLANNING PROBLEM IN GSM NETWORKS -- Mathematical Description -- HEURISTIC SEARCHES INCLUDED IN OUR STUDY -- The Genetic Algorithm -- The Scatter Search Heuristic -- The Population Based Incremental Learning -- The Greedy Randomized Adaptive Search Procedure -- EXPERIMENTAL EVALUATION AND RESULTS -- Empirical Results -- CONCLUSION AND FUTURE WORK -- ACKNOWLEDGMENTS -- REFERENCES -- EMERGENCE AND ADVANCES OF QUANTUM SEARCH -- BACKGROUND -- AN INTRODUCTION TO QUANTUM COMPUTATION -- Quantum Search Algorithm -- A Quantum Oracle -- Grover's Search Algorithm -- Optimality of Grover's Algorithm -- CONTINUOUS TIME SEARCH ALGORITHM -- Uses of Grover's Search Algorithm -- Hardware Implementation -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- EFFICIENT IMPLEMENTATIONS OF BI-LEVEL PROGRAMMING METHODS FOR CONTINUOUS NETWORK DESIGN PROBLEMS -- ABSTRACT -- 1. INTRODUCTION -- 2. BI-LEVEL PROGRAMMING PROBLEM (BLPP) FORMULATION FOR ENDP -- 3. SOLUTION ALGORITHMS -- 3.1. Rosen's Gradient Projection Method -- 3.2. Conjugate Gradient Projection Method -- 3.3. Quasi-Newton Projection Method: Algorithm of BFGS -- 3.4. Rosen's Gradient Projection Method with PARTAN -- 4. COMPUTATIONAL RESULTS -- CONCLUSIONS AND DISCUSSIONS -- ACKNOWLEDGMENTS -- REFERENCES.
A HYBRID INTELLIGENT TECHNIQUE COMBINES NEURAL NETWORKS AND TABU SEARCH METHODS FOR FORECASTING -- ABSTRACT -- 1. INTRODUCTION -- 2. ARTIFICIAL NEURAL NETWORKS -- 3. THE HYBRID INTELLIGENT TECHNIQUE FOR FORECASTING -- 3.1. The Tabu Search Algorithm -- 3.2. The Hybrid Intelligent Method for Forecasting -- 4. IMPLEMENTATION -- CONCLUSION -- REFERENCES -- LU_HANCOCK: A BEST FIRST SEARCH TO PROCESS SINGLE-DESTINATION MULTIPLE-ORIGIN ROUTE QUERY IN A GRAPH -- ABSTRACT -- INTRODUCTION -- RELATED WORK -- LU: A BEST FIRST SEARCH ALGORITHM TO PROCESS SOMDR QUERIES IN A GRAPH -- Algorithm -- Admissibility and Optimality -- LU_HANCOCK: THE REVERSE LU TO PROCESS SDMOR QUERIES IN A GRAPH -- Algorithm -- Admissibility and Optimality -- The Pseudo Code -- EXPERIMENT AND RESULT ANALYSIS -- Performance Measures -- RESULTS -- CONCLUSION -- REFERENCES -- SOME HEURISTIC APPROACHES FOR SOLVING NON-CONVEX OPTIMIZATION PROBLEMS -- Abstract -- 1.Introduction -- 2.Stochastic methods for solving continuous non-convex optimization problems -- 2.1.Simulated annealing -- 2.1.1.Metropolis algorithm and simulated annealing -- 2.1.2.Simulated annealing algorithm -- 2.2.Genetic Algorithm -- 2.2.1.The main steps of a Genetic Algorithm -- 2.2.2.The standard genetic algorithm -- 2.3.Particle Swarm Optimization (PSO) -- 2.3.1.Dynamics of the particles of a swarm -- 2.3.2.The standard PSO algorithm -- 2.4.Heuristic Kalman Algorithm -- 2.4.1.Principle of the algorithm -- 2.4.2.The updating rule of the Gaussian generator -- 2.4.3.Algorithm -- 3.Quasi Geometric Programming -- 3.1.Geometric Programming -- 3.1.1.Standard formulation -- 3.1.2.Convex formulation -- 3.2.Formulation of a Quasi Geometric Programming Problem -- 3.3.Resolution of a QGP -- 3.4.Robustness Issue -- 4.Application to Some Engineering Problems -- 4.1.Robust Structured Control.
4.1.1.Formulation of the optimization problem -- 4.1.2.Numerical experiments -- 4.2.Design of Spiral Inductors on Silicon -- 4.2.1.Inductor model -- 4.2.2.Formulation of the optimization problem -- 4.2.3.Numerical experiments -- 5.Conclusion -- References -- EVOLUTIONARY ALGORITHM BASED ON CONCEPT OF STOCHASTIC SCHEMATA EXPLOITER -- Abstract -- 1.Introduction -- 2.Real-Coded Genetic Algorithms -- 2.1.Optimization Problem -- 2.2.RGA Algorithm -- 2.3.Simplex Crossover (SPX) -- 2.4.Unimodal Normal Distribution Crossover (UNDX-m) -- 2.5.Minimum Generation Gap -- 3.Real-Coded Stochastic Schemata Exploiter (RSSE) -- 3.1.RSSE Algorithm -- 3.2.Defining Sub-populations -- 3.2.1.Semi-Order Relation -- 3.2.2.Sub-population -- 4.Numerical Examples -- 4.1.Test Problems -- 4.1.1.Sphere Function -- 4.1.2.Rastrigin Function -- 4.1.3.Schwefel Function -- 4.1.4.Ridge Function -- 4.1.5.Rosenbrock Function -- 4.1.6.Griewank Function -- 4.2.Numerical Results -- 4.2.1.Sphere Function -- 4.2.2.Rastrigin Function -- 4.2.3.Schwefel Function -- 4.2.4.Ridge Function -- 4.2.5.Rosenbrock Function -- 4.2.6.Griewank Function -- 5.Conclusion -- References -- INDEX.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View