Cover image for Nondestructive Testing : Methods, Analyses and Applications.
Nondestructive Testing : Methods, Analyses and Applications.
Title:
Nondestructive Testing : Methods, Analyses and Applications.
Author:
Mallory, Earl N.
ISBN:
9781612093635
Personal Author:
Physical Description:
1 online resource (216 pages)
Series:
Mechanical Engineering Theory and Applications
Contents:
NONDESTRUCTIVE TESTING: METHODS, ANALYSES AND APPLICATIONS -- NONDESTRUCTIVE TESTING: METHODS, ANALYSES AND APPLICATIONS -- LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA -- CONTENTS -- PREFACE -- Chapter 1: L NONDESTRUCTIVE MATERIALS CHARACTERIZATION BY MAGNETIC SENSING -- ABSTRACT -- 1. INTRODUCTION -- 2. MODELING OF THE SIGNAL FROM ISOTROPICSPHERICAL INCLUSIONS -- 2.1. Infinite Homogeneous Medium Containing a SphericalInclusion -- 2.2. Numerical Results -- 2.3. Half-Space with a Surface-Breaking Spherical Inclusion -- 2.4. Half-Space with a Subsurface Spherical Inclusion -- 3. EXPERIMENTAL INVESTIGATION OF THE SIGNAL FROMISOTROPIC SPHERICAL INCLUSIONS -- 3.1. Thermoelectric Detection of Surface-Breaking Spherical TinInclusions in Copper -- 3.1.1. Experimental method -- 3.1.2. Experimental results -- 3.2. Thermoelectric Detection of Subsurface Tin Inclusions InCopper -- 3.2.1. Experimental method -- 3.2.2. Experimental results -- 4. THERMOELECTRIC DETECTION OF HARD ALPHAINCLUSION IN TI-6AL-4V -- 4.1. State of Art -- 4.2. Experimental Method -- 4.3. Experimental Results -- 5. THERMOELECTRIC SIGNATURE PRODUCEDBY RESIDUAL STRESS -- 5.1. State of Art -- 5.2. Monitoring Residual Stress Relaxation in Copper -- 5.2.1. Thermal stress release -- 5.2.2. Experimental results -- 5.3. Monitoring Residual Stress Relaxation in Nickel-BaseSuperalloys -- 6. CONCLUSION -- REFERENCES -- Chapter 2: EXPERIMENTAL AND NUMERICAL METHOD FOR NONDESTRUCTIVE ULTRASONICD EFECT DETECTION -- ABSTRACT -- 1. INTRODUCTION -- 2. LASER-BASED ULTRASOUND -- 3. MODELING PROCEDURES -- 3.1. Explicit Dynamic Analysis for Wave Propagation -- 3.2. Propagation of Sound Waves through Air -- 4. RESULTS -- 4.1. Comparison with Analytical Solution - Circular Annulus -- 4.2. Testing of the Rail Head without Defects -- 4.3. Testing of the Rail Web.

4.4. Testing of the Rail Head with Defect -- 4.5. Testing of the Rail Head without Defects Using a Non-Contact Transducer -- 5. CONCLUSION -- REFERENCES -- Chapter 3: INVESTIGATION OF THERMAL PROPERTIES OF STEEL UNDERGOING HEAT TREATMENT BY THE PHOTOTHERMAL DEFLECTION TECHNIQUE: CORRELATION WITH MECHANICAL PROPERTIES -- ABSTRACT -- 1. INTRODUCTION -- 2. PRINCIPLE OF THE PTD TECHNIQUE -- 3. THEORY -- 3.1. Heat Transfer by Conduction Mode -- 3.2. Calculation of the Laser Probe Beam Deflection Ψ -- 3.3. Calculation of the Periodic Elevation Temperature T0 at theSample Surface -- 3.3.1. Case of bulk sample -- 3.3.2. Sample composed of a layer deposed on a substrate -- 3.3.3. Case of n layers deposed on a substrate -- 3.4. Optimization of Experimental Conditions for Determiningthe Thermal Properties of the Graphite Layer and the Sample -- 3.4.1. Study of the thermal properties of the graphite layer -- 3.4.1.1. Case where the graphite layer is thermally thick:Determination of its thermal diffusivity -- 3.4.1.2. Case of thermally thin graphite layer: Determination of itsthermal conductivity -- 3.4.2. Influence of the graphite layer thickness on the determination ofthermal properties of the sample -- 3.4.2.1. Case of thermally thick graphite layer -- 3.4.2.2. Case of thermally thin graphite layer -- 4. EXPERIMENTAL SET-UP OF THE PTD TECHNIQUE -- 5. EXPERIMENTAL RESULTS -- 5.1. Comparison between Different Photothermal DeflectionTechnique to Determine Thermal Properties of BulkSemiconductors -- 5.1.1. First method -- 5.1.2. Second method -- 5.1.3. Third Method -- CONCLUSION -- 5.2. Determination of Thermal Properties of Steel UndergoingHeat Treatments -- 5.2.1. Determination of thermal properties of the graphite layer -- 5.2.2. Determination of thermal properties of some metals -- 5.2.3. Study of treated steels.

A. DETERMINATION OF THE THERMAL AND MECHANICALPROPERTIES OF CARBURIZED SAMPLES -- A.1. Preparation of the Sample -- A.2. Thermal Properties Investigation -- A.3. Mechanical Properties -- CONCLUSION -- B. DETERMINATION OF THE THERMAL AND MECHANICALPROPERTIES OF NITRIDE SAMPLES -- B.1. Nitriding Process -- B.2. Correlation between Thermal and Mechanical Properties -- CONCLUSION -- C. ELECTROEROSION -- C.1. Preparation of the Sample -- C.2. Prospecting of the Affected Depth by the PTD Technique -- C.3. Evolution of the Thermal Properties -- CONCLUSION -- D. CORRELATION BETWEEN THE THERMAL PROPERTIESAND THE HARDNESS OF END-QUENCH BARS FOR C48,42CRMO4 AND 35NICRMO16 STEELS -- D.1. Heat Treatment and Preparation of the Sample -- D.2. Determination of the Thermal Properties -- D.3. Measurements of Rockwell Hardness (HRC) -- CONCLUSION -- REFERENCES -- Chapter 4: MACHINE THERMAL DIAGNOSTICS LATEST ADVANCES -- ABSTRACT -- 1. INTRODUCTION -- 2. THEORETICAL BACKGROUND -- 2.1. Diagnostic Parameter -- 2.2. Residual Service Life -- 3. EXPERIMENTAL AND FIT OF EXPERIMENTAL DATA -- 4. ON INFLUENCE OF CONDITIONS ON MACHINE HEATING -- 5. PREDICTED RSL RELIABILITY -- 5.1. Determination of RSL Reliabiliy by Simulation -- 5.2. Calculation Algorithm and Results of Simulations -- 6. CONCLUSION -- 6. ACKNOWLEDGMENTS -- REFERENCES -- NOMENCLATURE -- Chapter 5: SCANNING ACOUSTIC CORRELATION MICROSCOPY -- ABSTRACT -- INTRODUCTION -- Propagation Analysis -- Cross Correlation Analysis -- RESULTS -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- INDEX.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: