
Industrial Waste : Environmental Impact, Disposal and Treatment.
Title:
Industrial Waste : Environmental Impact, Disposal and Treatment.
Author:
Samuelson, John P.
ISBN:
9781614700890
Personal Author:
Physical Description:
1 online resource (436 pages)
Contents:
INDUSTRIAL WASTE: ENVIRONMENTALIMPACT, DISPOSAL AND TREATMENT -- CONTENTS -- PREFACE -- MOLECULAR MECHANISMSOF CHROMIUM-INDUCED CARCINOGENESIS -- Abstract -- Introduction -- Part 1. Epidemiology -- I. Inhalation -- II. Ingestion -- III. Skin Contact -- Part 2. Cellular Metabolism and Cr(VI)-induced DNA Damage -- I. Toxicity of Different Valence States -- II. Cr(VI) Reductive Metabolism -- III. Effects of Antioxidants on Cr(VI) Toxicity -- IV. Cr(VI)-induced Genetic Lesions -- i. Cr-DNA Adduct Formation -- ii. DNA Interstrand Crosslinks (ICLs) -- iii. DNA-Protein Crosslinks (DPCs) -- iv. DNA Strand Breaks and Chromosomal Abnormalities -- v. Cr-induced Mutagenesis -- vi. Effects on DNA and RNA Synthesis -- vii. Role of ROS in Cr-DNA Damage -- Part 3. Molecular Mechanisms of Cellular Response to Cr(VI) -- I. Regulation of Cell Cycle Checkpoint Arrest -- i. S-phase Checkpoint -- ii. G2/M Checkpoint -- II. Apoptosis -- III. Molecular Determinants of Cellular Response to Cr(VI) -- ATM -- p53 -- Chk2 -- MAP Kinases -- AP-1 -- HIF-1 and VEGF -- NF-kB -- Conclusion -- Acknowledgement -- Reference -- INDUSTRIAL WASTES AS LOW-COST ADSORBENTSFOR TEXTILE DYES: A REVIEW -- Abstract -- 1. Introduction -- 2. Some Considerations -- 2.1. Textile Wastewaters and Dyes -- 2.2. Adsorption -- 3. Commercial Activated Carbons -- 4. Wastewater Treatment Sludges -- 4.1. Sewage Sludges -- 4.2. Waste Sludges of Inorganic Matrix -- 5. Agricultural/AGROFood Industrial Wastes -- 6. Timber Industrial Wastes -- 7. Tanning/Leather Industrial Wastes -- 8. Seafood Wastes -- 9. Wastes from Power Plants -- 10. Steel Plant Wastes -- 11. Other Industrial Wastes -- 12. Conclusion -- Acknowledgements -- References -- COST EFFECTIVE ADSORBED MATERIALSFOR INDUSTRIAL WASTEWATER TREATMENT -- Abstract -- Introduction -- Adsorption Theory.
Low Cost Adsorbents Divided into Several Adsorbent Types as Follow -- 1. Natural Materials -- 1.1. Natural Diatomite -- 1.2. Zeolites -- 1.3. Calcite and Lignite -- 1.4. Bentonite -- 1.5. Clay Minerals (Kaolinite, Illite and Montmorillionite) -- 1.6. Talc -- 3. Industrial Solid Wastes -- 4. Biosorbents (or Bioadsorption) -- 2. Agricultural Solid Wastes -- Adsorbents According to Pollutant Types -- 1. Adsorbents for Removal of Heavy Metals -- 2. Adsorbents for Removal of Dyes -- 3. Adsorbents for Removal of Other Organic Pollutants -- Cost-Effectiveness of Low-Cost Adsorbents -- Refrences -- VALORIZATION OF AGRO-INDUSTRIAL WASTESBY BIOLOGICAL TREATMENT -- Abstract -- 1. Introduction -- 2. Solid State Fermentation Processes: Definition -- 3. Solubilization of Insoluble Inorganic Phosphate Sources in SSFand Further Use of the Resulting Products -- 4. Application of Agro-industrial Wastes in Phytase Production -- 5. Application of Solid-State-Processed Agro-industrial Wastes inProduction of Biological Control Agents -- 6. Conclusion -- References -- INDUSTRIAL POLLUTION MANAGEMENT:A SUSTAINABILITY PERSPECTIVE -- Abstract -- 1. Introduction -- 2. Sustainability -- 3. Systems Theory Approach -- 4. Time Dependent Uncertainty Modeling -- 5. Optimization: L-shaped BONUS Algorithm -- 5.1. Methods for SNLP Problem Solution -- 5.1.1. General Overview -- 5.1.2. Sampling Based Methods -- 5.2. BONUS -- 5.2.1. The Reweighting Approach -- 5.3. L-shaped Method with Sampling -- 5.4. Proposed Algorithm: L-shaped BONUS -- 5.4.1. Algorithm Details -- 5.5. Algorithm Results and Discussion -- 6. Stochastic Optimal Control Theory -- 7. Sustainable Waste Management: Case of Mercury Pollution -- 8. Industrial Level Management -- 9. Industrial Sector Level Management: Pollutant Trading -- 9.1. Pollutant Trading -- 9.2. Watershed Based Trading -- 9.2.1. Overview.
9.2.2. Implementation Perspective -- 9.3. Optimization Based Decision Making Model -- 9.4. Savannah River Case Study -- 9.4.1. Savannah RiverWatershed Details -- 9.4.2. Technology Details -- 9.4.3. Trading Details -- 9.4.4. Health Care Cost Consideration -- 9.5. Savannah Case Study: Results and Discussion -- 9.5.1. Comparison between Trading and Non-trading Solutions -- 9.5.2. Solution Dependence on the TMDL Regulation -- 9.6. Health Care Cost Consideration -- 9.6.1. Sensitivity Analysis for Health Care Cost -- 9.6.2. Modified Problem Formulation -- 9.6.3. Model Results: Savannah River Basin -- 9.7. Chance Constrained Formulation and Analysis -- 9.7.1. Problem Formulation -- 9.7.2. Model Results: Savannah River Basin -- 9.8. Stochastic Programming Pollutant Trading Problem -- 9.8.1. Basic Problem Formulation -- 9.8.2. Two Stage Problem Formulation -- 9.9. Discussion: Industrial Sector Level Management -- 9.10. Future Extensions -- 10. Water Pollutant Trading: Application of L-shaped BONUS -- 10.1. Non-point Pollutant Trading -- 10.2. Trading Problem Formulation -- 10.3. Results of the Trading Problem -- 10.4. Discussion -- 11. Ecosystem Level Management: Lake Liming -- 11.1. Mercury Bioaccumulation Overview -- 11.2. Lake Liming -- 11.3. Systematic Approach to Lake Liming -- 11.4. Lake Liming Model -- 11.4.1. Basic Deterministic Model -- 11.4.2. Modified Nonlinear Lake Liming Model -- 11.4.3. Modified Linear Lake Liming Model -- 11.4.4. Stochastic Lake Liming Model -- 11.5. Optimal Control Problem -- 11.6. Lake Liming Problem Results -- 11.7. Multi-objective Liming Problem -- 11.8. Discussion: Ecosystem Level Management -- 12. Conclusion -- References -- POLLUTANT DETECTION AND ENVIRONMENTALMONITORING USING CONDUCTOMETRICMICROBIOSENSORS -- Abstract -- 1. Introduction -- 2. Conductometric Method of Measurement.
3. Transducers for Conductometric Biosensors -- 4. Conductometry in Enzyme Catalysis -- 5. Conductometric Biosensors -- 5.1. Conductometric Biosensors for Environmental Monitoring -- 5.2. Conductometric Enzyme Biosensors for Environmental Monitoring -- 5.3. Conductometric Whole-Cell Biosensors for Environmental Monitoring -- 6. Conclusion -- References -- USING LEARNING MACHINES MORE INTELLIGENTLYAND RIGOROUSLY FOR THE GROUND-LEVEL OZONEPREDICTION -- Abstract -- 1. Introduction -- 2. Ozone Prediction with MLP -- 2.1. Review -- 2.2. Overfitting and "Black-Box" Problems Addressed by Bayesian MLP,and More -- 2.3. Local Minima Problem Addressed by Particle Swarm OptimizationAlgorithm, and More -- 3. Ozone Prediction with Support Vector Machine -- 4. Discussion and Conclusion -- PROFILING THE IMPLEMENTING OF PRODUCTSTEWARDSHIP: A CASE STUDY OF SOME CHEMICALINDUSTRIES IN GERMANY -- Abstract -- 1. Introduction -- 2. Background -- 2.1. The Socio- Economic Importance of Germany Ś Chemical Industry -- 2.2. Product Stewardship: An Overview of Basic Tools -- a. Design for the Environment -- b. Eco-Labeling -- c. Green Purchasing -- d. Take Back Programs -- 2.3. Why the Need For Product Stewardship in Germany's ChemicalIndustry? -- 3. Research Methodology -- 4. Survey Results -- 4.1. Have You Adopted Product Stewardship in Your Company? -- 4.2. When Was Product Stewardship Initiated in Your Company? -- 4.3. Do You Purchase Environmentally Friendly Raw Material to Be Used inthe Design of Your Products? If Yes Please Give Examples -- 4.4. Do You Recycle and Reprocess Used Products? -- 4.5. Are Your Products Packaged, Labeled and Stored According to theRelevant EU Legislation? -- 4.6. In What Areas Have You Predominantly Reduced Emissions? -- 5. Survey Reflections -- 6. The Way Forward -- References.
BIOACTIVE SUBSTANCES DERIVED FROM FISHPROCESSING WASTES AND THEIRBIOTECHNOLOGICAL APPLICATIONS -- Abstract -- 1. Introduction -- 2. Bioactive Substances Derived from Fish Muscle -- 2.1. Peptides -- 2.1.1. Antioxidants -- 2.1.2. ACE Inhibitors -- 2.1.3. Anticoagulants -- 2.1.4. Calcium Absorption Enhancers -- 2.1.5. Immunostimulants -- 3. Bioactive Substances Derived from Fish Skin -- 3.1. Proteins (Collagen and Gelatin) -- 3.1.1. Biomedical and Nutraceutical Applications -- 3.2. Peptides -- 3.2.1. Antioxidants -- 3.2.2. ACE Inhibitors -- 3.3. Carbohydrates -- 3.3.1. Anti Coagulants -- 4. Bioactive Substances Derived from Fish Bone -- 4.1. Bioactive Calcium -- 4.2. Biomedical Applications of the Inorganic Compounds -- 5. Bioactive Substances from the Internal Organs of Fish -- 5.1. Enzymes -- 5.2. Peptides -- 6. Shells of Crustacean and Shellfish -- 6.1. Chitin, Chitosan and Their Oligomers -- 6.1.1. Antioxidants -- 6.1.2. ACE Inhibitors -- 6.1.3. Immunostimulants -- 6.1.4. Hypocholesterolemic Agents -- 6.1.5. Antitumor Agents -- 6.1.6. Antimicrobial Agents -- 6.1.7. β-secretase Inhibitors -- 6.1.8. Wound-Healing Agents -- 6.1.9. Artificial Skin -- 6.2. Proteins -- 7. Bioactive Substances Derived from Other FishProcessing Wastes -- 7.1. Scales -- 7.2. Eggs -- 7.3. Fins -- 7.4. Offal -- 7.4.1. Fish Oils and Their Health Benefits -- 8. Conclusion -- Acknowledgements -- References -- INDUSTRIAL WASTEWATER TREATMENT USINGADVANCED CHEMICAL OXIDATION WITH FENTONREAGENT -- Abstract -- 1. Introduction -- 2. Materials and Methods -- 3. Experimental Design -- 4. Results and Discussion -- 4.1. Semiconductor Industry Wastewater -- 4.1.1. Preliminary Runs -- 4.1.1.1. Effect of Feso4: H2O2 Mass Ratio -- 4.1.1.2. Effect of H2O2 Concentration -- 4.1.1.3. Reaction Time -- 4.1.2. Experimental Design -- 4.2. Wood Production Wastewater -- 5. Conclusions -- References.
COAGULATION-FLOCCULATION PROCESSESAPPLIED IN WATER OR WASTEWATER TREATMENT.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View