
Structural Materials and Engineering.
Title:
Structural Materials and Engineering.
Author:
Hagy, Ference H.
ISBN:
9781613241103
Personal Author:
Physical Description:
1 online resource (386 pages)
Contents:
STRUCTURAL MATERIALSAND ENGINEERING -- STRUCTURAL MATERIALS AND ENGINEERING -- CONTENTS -- PREFACE -- MICROSTRUCTURE AND FRACTURE ASPECTSOF SHORT FIBER REINFORCED THERMOPLASTICSAND TOUGHENED WITH ELASTOMERS -- ABSTRACT -- INTRODUCTION -- FRACTURE TOUGHNESS CHARACTERIZATION -- POLYAMIDE-BASED COMPOSITES -- POLYPROPYLENE-BASED COMPOSITES -- REINFORCED PA/PP BLENDS -- POLYESTER BASED COMPOSITES -- CONCLUSIONS -- REFERENCES -- RECYCLED AGGREGATE STRUCTURAL CONCRETE:A METHODOLOGY FOR THE PREDICTIONOF ITS PROPERTIES -- ABSTRACT -- ABBREVIATIONS -- INTRODUCTION -- The Construction and Demolition Waste Problem -- Production of CDW in Europe -- Production of Aggregates in Europe -- RECYCLED AGGREGATES FROM CONSTRUCTIONAND DEMOLITION WASTE -- Classification of Recycled Aggregates -- Recycled Concrete Aggregate -- Recycled Ceramic Aggregate -- Expected Trends in Recycled Aggregate Concrete -- TECHNICAL BARRIERS TO THE USE OF RA IN GENERALAND IN RAC PRODUCTION -- General Barriers to the Use of CDW RA -- Barriers to the Use of CDW RA in RAC Production -- PREDICTION OF RAC'S LONG-TERM PROPERTIES -- Methodology Proposed -- Literature Reviews -- Short Description of the Experimental Campaigns Selected -- RESULTS AND DISCUSSION -- General Remarks -- Density -- Compressive Strength -- Modulus of Elasticity -- Splitting Tensile Strength -- Flexural Tensile Strength -- Abrasion Resistance -- Shrinkage -- Creep -- Water Absorption by Capillarity -- Water Absorption by Immersion -- Carbonation Resistance -- Chloride Penetration Resistance -- Summary of the Results -- An Application of the Methodology -- GENERAL CONCLUSIONS -- REFERENCES -- A KINETIC MODEL OF THE OXIDE GROWTHAND RESTRUCTURING ON STRUCTURAL MATERIALSIN NUCLEAR POWER PLANTS -- ABSTRACT -- ABBREVIATIONS -- INTRODUCTION -- Importance of the Problem.
Oxide Films, Localised Corrosion and Stress Corrosion Cracking -- Oxide Films and Activity Incorporation -- Objective and Structure of the Chapter -- Composition of the Structural Materials Discussed in the Chapter -- THEORY -- The Mixed-Conduction Model -- Inner Layer Growth According to the Proposed Approximation of the MCM -- An Approach to the Outer Layer Growth -- Incorporation of Solution-Originating Cations in the Oxide -- Description of the Calculation Procedure -- RESULTS AND DISCUSSION -- Simulated and in-Reactor PWR Conditions -- Simulated and in-Reactor BWR Conditions -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- THE FLEXURAL MODULUS OF POLYMERMATRIX COMPOSITES -- ABSTRACT -- 1. INTRODUCTION -- 2. THE FLEXURAL MODULUS -- 2.2. Multi-Modulus Materials -- 2.3. Geometry of Reinforcement -- 3. MODELLING -- Perfect Adhesion -- Partial Adhesion -- 4. EXPERIMENTAL -- 5. RESULTS AND DISCUSSION -- The Flexural Modulus -- Interfacial Adhesion -- Comparison with the Partial Adhesion Model -- Reinforcement Geometry -- 6. CONCLUSIONS -- REFERENCES -- PROBABILISTIC MODELING OF CLEAVAGEFRACTURE IN THE DUCTILE-TO-BRITTLETRANSITION REGION -- ABSTRACT -- INTRODUCTION -- THE WEIBULL STRESS MODEL -- CALIBRATION OF THE WEIBULL STRESS MODEL -- THE THREE-PARAMETER WEIBULL STRESS MODEL -- PREDICTION OF CLEAVAGE FRACTUREIN A PRESSURE VESSEL STEEL -- LOADING RATE EFFECT ON THE WEIBULLSTRESS MODEL PARAMETERS -- FURTHER MODIFICATION OF THE WEIBULL STRESS MODELAND THE EFFECT OF TEMPERATURE ON MODEL PARAMETERS -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- TOWARDS PERFORMANCE-BASED SEISMIC DESIGNFOR BUILDINGS IN TAIWAN -- ABSTRACT -- 1.1. INTRODUCTION -- 1.2. LESSONS LEARNED FROM THE 1999 CHI-CHI EARTHQUAKE -- 1.2.1. Need of Multi-Level and Transparent Performance Objectives -- 1.2.2. Need of Site Suitability Study and Site-SpecificSeismic Hazard Analysis.
1.2.3. Need for Proper Selection of the Configuration or Structural System -- 1.2.4. Need for Proper Selection of the Analysis Tools and Design Detailing -- 1.2.5. Need for Construction Quality Assurance and Maintenance of BuildingIntegrity throughout Its Life Cycle -- 1.2.6. Need for Comprehensive Loss and Cost Estimation -- 1.2.7. Need for Taking Account of Uncertainties and Risk -- 1.2.8. Need for Collaboration among Seismologists, Geologists,Architects, Structural and Geotechnical Engineers,Socioeconomic Scientists and Contractors -- 1.3. INTRODUCING PERFORMANCE-BASED SEISMIC DESIGNMETHODOLOGY INTO TAIWAN -- 1.3.1. General Concepts -- 1.3.2. Brief Summary on the State of the Art and the State of the Practice -- 1.3.3. Deficiencies in the Existing Seismic Design Code in Taiwan -- 1.3.4. Misleading in Engineering Practice -- 1.4. DEVELOPMENT OF THE PERFORMANCE-BASED SEISMIC DESIGNDRAFT CODE FOR BUILDINGS IN TAIWAN -- 1.4.1. The Framework and the Design Flowchart -- 1.4.2. Performance Objectives and Criteria -- 1.4.3. Site Feasibility -- 1.4.4. Conceptual Design -- 1.4.5. Preliminary Design -- 1.4.6. Detailed Seismic Performance Assessment -- 1.4.7. Seismic Performance Evaluation of Existing Buildings -- 1.5. CASE STUDIES -- 1.5.1. An Example by Using the Draft Code Provisions -- 1.5.2. An Example by Using a Direct Displacement-Based Design Approach -- 1.6. FEEDBACK AND DIFFICULTIES ENCOUNTERED DURINGTHE DEVELOPMENT OF THE DRAFT CODE -- 1.7. MULTIDISCIPLINE COLLABORATIONTHROUGH VIRTUAL ENGINEERING -- 1.7.1. VRML-Based Design Collaboration Model -- 1.7.2. Examples and Discussions -- 1.8. SUMMARY AND FUTURE ACTIVITIES -- ACKNOWLEDGMENTS -- REFERENCES -- RECENT ADVANCES IN THE DESIGN OF INDUSTRIALGROUND-FLOOR SLABS WITH SPECIAL EMPHASISON PERMISSIBLE DEFORMATIONS -- ABSTRACT -- ABBREVIATIONS -- 1. INTRODUCTION -- 2. HISTORICAL BACKGROUND.
3. PROBLEM DEFINITION -- 4. METHODOLOGY USED -- 5. MAXIMUM DEFLECTION FOR THE CENTRAL-LOAD CASE ( iδ -- 5.1. Effect of Width of Loaded Area ( d ) -- 5.2. Effect of Concrete Grade -- 5.3. Comparison with Existing Experimental Results -- 5.4. Comparison of the LFEA-Based iδ -- 6. MAXIMUM DEFLECTION FOR THE EDGE-LOAD CASE ( e δ ) -- 6.1. Comparison with Existing Experimental Results -- 6.2. Comparison with the Westergaard Equation for e δ -- 7. MAXIMUM DEFLECTION FOR THE CORNER-LOAD CASE ( c δ ) -- 7.1. Effect of the Width of Loaded Area ( d ) -- 7.2. Comparison with Existing Experimental Results -- 7.3. Comparison with the Westergaard Equation for c δ -- 8. MAXIMUM DEFLECTION DUE TO SELF-WEIGHT LOAD ( SW δ ) -- 9. MAXIMUM DEFLECTION DUE TOUNIFORMLY-DISTRIBUTED LOAD ( UDL δ -- 10. TOTAL MAXIMUM DEFLECTION ( T δ ) -- 11. CONCLUSION -- REFERENCES -- APPENDIXCOMPARATIVE DESIGN EXAMPLE -- 1. INTRODUCTION -- 2. PROBLEM -- 3. SOLUTIONS -- 3.1 Shape of Loaded Area -- 3.2 Size of Loaded Area -- 3.3 Partial Safety Factors Against Collapse -- 3.4 Central-Load Case -- 3.5 Edge-Load Case -- 3.6. Corner-Load Case -- 4. SUMMARY OF DESIGN EXAMPLE RESULTS -- 4.1 Maximum Deflections -- 5. CONCLUSIONS BASED ON DESIGN EXAMPLE -- TOWARDS EFFICIENT ANALYTICALMODELS FOR SEISMIC ANALYSISOF MULTISTORIED BUILDINGS -- ABSTRACT -- 1. INTRODUCTION -- 2. A PLANAR FRAME MODELFOR STRUCTURAL WALLS WITH OPENINGS -- 3. STATIC NON LINEAR ANALYSISOF A REINFORCED CONCRETE BUILDING -- 4. STATIC NON LINEAR ANALYSISOF AN UNREINFORCED MASONRY BUILDING -- 5. CONCLUSION -- 6. REFERENCES -- DYNAMIC STABILITY OF BEAMSUSING A HIGHER ORDER THEORY -- ABSTRACT -- 1. INTRODUCTION -- 2. KINEMATICS -- 2.1. Development of the Displacement Field -- 2.2. Warping Displacements -- 3. THE STRAIN FIELD -- 4. VARIATIONAL FORMULATION -- 5. BEAM FORCES AND CONSTITUTIVE EQUATIONS -- 6. REDUCED MODEL.
6.1. Transverse Excitation -- 6.2. Axial Excitation -- 7. REGIONS OF INSTABILITY -- 8. APPLICATIONS AND NUMERICAL RESULTS -- 8.1. Bisymmetric Open Section -- 8.2. Monosymmetric Open Cross-Section -- 8.3. SIMPLY-SUPPORTED BEAM SUBJECTED TO DISTRIBUTED LOAD -- 8.4. Cantilever Beam Subjected to End Force -- 8.5. Fixed-End Beam Subjected to a Concentrated Force -- 9. CONCLUSION -- ACKNOWLEDGMENTS -- APPENDIX A. CONSTITUTIVE LAW -- REFERENCES -- THE PREDICTION OF SURVIVAL PROBABILITIESOF BUILDING STRUCTURES UNDER TRANSIENTEXTREME EXECUTION LOADS -- ABSTRACT -- ABBREVIATIONS -- 1. INTRODUCTION -- 2. CONSTRUCTION LOADS IN THE STRUCTURAL STRENGTH DESIGN -- 2.1. SEI/ASCE 37 Recommendations -- 2.2. ENV 1991-2-6 Recommendations -- 3. SAFETY MARGINS OF MEMBERS -- 3.1. The Life Cycle of Carcass Erection -- 3.2. The Life Cycle of Mixed Construction Work -- 4. PROBABILISTIC APPROACHES IN STRUCTURAL RELIABILITYANALYSIS -- 4.1. Instantaneous Survival Probability -- 4.2. Time-Dependent Survival Probability -- 4.3. The Analysis of Correlation Factors of Series Systems -- 5. PARTIAL SURVIVAL PROBABILITIES -- 5.1. The Life Cycle of Carcass Erection -- 5.2. The Life Cycle of Mixed Construction Work -- 5.3. Reliability Indices of Members -- 6. NUMERICAL EXAMPLE -- 6.1. Initial Data -- 6.2. Limit State Design Format -- 6.3. Probabilistic Design Format -- 5. CONCLUSIONS -- REFERENCES -- INDEX.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View