
Phosphate Solubilising Microbes for Crop Improvement.
Title:
Phosphate Solubilising Microbes for Crop Improvement.
Author:
Khan, Mohammad Saghir.
ISBN:
9781617285615
Personal Author:
Physical Description:
1 online resource (473 pages)
Series:
Agriculture Issues and Policies
Contents:
PHOSPHATE SOLUBILIZING MICROBESFOR CROP IMPROVEMENT -- CONTENTS -- PREFACE -- ABOUT EDITORS -- CONTRIBUTORS -- BIOLOGICAL IMPORTANCE OF PHOSPHORUSAND PHOSPHATE SOLUBILIZINGMICROBES - AN OVERVIEW -- ABSTRACT -- 1.1. INTRODUCTION -- 1.2.1. Phosphorus Deficiency -- 1.3. PHOSPHORUS IN THE SOIL SYSTEM AND ITSAVAILABILITY TO PLANTS -- 1.4. EFFECTS OF COMPOST AND FERTILIZERON SOIL PHOSPHORUS -- 1.5. PLANT AVAILABLE PHOSPHORUS IN THE SOIL -- 1.6. BIOLOGICAL FACTORS AFFECTING AVAILABILITYOF PHOSPHORUS -- 1.7. AGRICULTURAL IMPORTANCE OF PHOSPHATESOLUBILIZING BACTERIA -- CONCLUSION -- REFERENCES -- NOVEL APPROACHES FOR ANALYSISOF BIODIVERSITYOF PHOSPHATE-SOLUBILIZING BACTERIA -- ABSTRACT -- 2.1. INTRODUCTION -- 2.2. MOLECULAR METHODS FOR ANALYSIS OF MICROORGANISMS:THE GENOMICS ERA -- 2.2.1. Gene Sequencing -- 2.2.2. Methods Based on DNA Polymorphisms -- 2.2.3. Low Molecular Weight RNA [LMW RNA] Profiles -- 2.2.4. Inmunofluorescence Methods: Fluorescent Labeling of Gene Products -- 2.2.5. Microarrays -- 2.3. CULTURE-INDEPENDENT MOLECULAR METHODS FOR ANALYSISOF MICROBIAL DIVERSITY: THE METAGENOMICS ERA -- 2.3.1. Fluorescence "In Situ" Hybridization [FISH] -- 2.3.2. Specific PCR Based Methods -- 2.3.3. Denaturing Gradient Gel Electrophoresis [DGGE] and TemperatureGradient Gel Electrophoresis [TGGE] -- 2.3.4. Single-Strand Conformation Polymorphisms -- 2.3.5. Ribosomal Intergenic Spacer Analysis and Automatized RibosomalIntergenic Spacer Analysis -- 2.3.6. Terminal Restriction Fragment Length Polymorphism -- 2.3.7. Amplified rDNA Restriction Analysis -- 2.3.8. Real-Time PCR -- 2.3.9. Complete Genomes and Future Perspectives -- CONCLUSION -- REFERENCES -- EFFECTS OF PHOSPHATE SOLUBILIZINGMICROORGANISM ON SOILPHOSPHORUS FRACTIONS -- ABSTRACT -- 3.1. SOIL P AVAILABILITY AND BEHAVIORFOR PLANT UPTAKE.
3.2. INGREDIENT OF GROWTH MEDIA INFLUENCE SOILMICROBIAL ACTIVITY AND P SOLUBILITY -- 3.3. SOLUBILIZATION OF MINERAL PHOSPHATES -- 3.4. ORGANIC PHOSPHATE SOLUBILIZATION -- 3.5. PHOSPHORUS SOLUBILIZING BACTERIA AFFECTDIFFERENTIAL P FRACTION OF SOIL -- 3.5.1. Total Phosphorus -- 3.5.2. Labile P fractions -- 3.5.3. Moderately Labile P Fractions -- 3.5.4. Rresidual P Fraction -- CONCLUSION -- REFERENCES -- ROLE OF PLANT GROWTH PROMOTINGMICROORGANISMS FOR SUSTAINABLECROP PRODUCTION -- ABSTRACT -- 4.1. INTRODUCTION -- 4.2. PLANT GROWTH PROMOTING MICROORGANISMS -- 4.2.1. Bacteria -- 4.2.2. Fungi -- 4.2.3. Actinomycetes -- 4.3. MECHANISMS OF PLANT GROWTH PROMOTION -- 4.3.1. Direct Plant Growth Promotion -- 4.3.1.1. Nitrogen -- 4.3.1.2. Phosphorus -- 4.3.1.3. Potassium -- 4.3.1.4. Iron -- 4.3.1.5. Phytohormones and Enzymes -- 4.3.1.6. Volatiles in Plant Growth Promotion -- 4.3.2. Indirect Plant Growth Promotion Mechanisms [Biocontrol] -- 4.3.2.1. 2,4-Diacetyl Phloroglucinol -- 4.3.2.2. Pyoluteorin -- 4.3.2.3. Phenazine-1-carboxylic acid [PCA] -- 4.3.2.4. Pyrrolnitrin -- 4.3.2.5. Cyclic Lipopeptides -- 4.2.6. Volatile Metabolites -- 4.3.2.7. Siderophore Production -- 4.2.8. Production of Hydrolytic Enzymes -- 4.3.2.3. Elicitors and Induced Resistance -- 4.4. RHIZOSPHERE -- 4.4.1. Competitive Root Colonization -- 4.4.2. Factors Affecting Root Colonization -- 4.4.3. Perception on Communication in Rhizosphere: Quorum Sensing[Biofilms] -- 4.5. INTERACTIONS WITH OTHER MICROORGANISMS -- 4.6. MOLECULAR MECHANISM FOR TRAKING BACTERIAIN RHIZOSPHERE -- 4.6.1. Marker Based Detection Methods -- 4.6.2. Nucleic Acid-Based Detection Methods -- 4.7. COMMERCIALIZATION OF PGPM -- 4.7.1. Carrier Materials -- 4.7.2. Technology Transfer -- 4.7.3. Multiple Applications -- 4.8. METAGENOMIC APPROACH TO EXPLOIT NOVEL PGPM -- 4.9. SIGNIFICANCE OF PGPM IN SUSTAINABLE AGRICULTURE.
CONCLUSION AND FUTURE OUTLOOKS -- REFERENCES -- GENETIC AND FUNCTIONAL DIVERSITYOF PHOSPHATE SOLUBILIZING FLUORESCENTPSEUDOMONADS AND THEIR SIMULTANEOUSROLE IN PROMOTION OF PLANT GROWTHAND SOIL HEALTH -- ABSTRACT -- 5.1. INTRODUCTION -- 5.2. MICROBIAL PHOSPHATE SOLUBILIZATION -- 5.3. MICROBIAL MECHANISMS MEDIATING PHOSPHATESOLUBILIZATION -- 5.4. MICROBIAL DIVERSITY OF PHOSPHATE SOLUBILIZINGFLUORESCENT PSEUDOMONADS -- 5.4.1. Functional Diversity of Phosphate- Solubilizing FluorescentPseudomonads -- 5.4.1.1. Plant Growth Promoting Traits -- 5.4.1.1.1. Siderophore -- 5.4.1.1.2. Protease -- 5.4.1.1.3. Indole-3-Acetic Acid -- 5.4.1.1.4. 1-Aminocyclopropane-1-carboxylate [ACC] Deaminase -- 5.4.1.1.5. N-acyl homoserine Lactone [AHL] -- 5.4.1.2. Biocontrol Traits -- 5.4.1.2.1. Antagonism -- 5.4.1.2.2. Fungal Cell Wall Degrading Enzyme -- 5.4.1.2.3. Production of Enzymes for Decomposition of Crop Residues -- 5.4.1.2.3.1. Cellulase -- 5.4.1.2.3.2. Pectinase -- 5.4.1.2.4. Rapid Detection of Antibiotic Genes and Antimicrobial Metabolites -- 5.4.2. Phenotypic and Genotypic Diversity of Phosphate Solubilizing-Fluorescent Pseudomonads -- 5.5. GENES INVOLVED IN PHOSPHATE SOLUBILIZATION -- 5.6. MOLECULAR TOOLS USED FOR ISOLATION ANDCHARACTERIZATION OF PHOSPHATE SOLUBILIZING FLUORESCENTPSEUDOMONADS -- 5.6.1. Isolation and Screening of Phosphate-Solubilizing Strains -- 5.6.2. Estimation of Phosphate Solubilization -- 5.6.3. Evaluation of Strains for Efficient Phosphate Solubilization -- 5.6.4. Phenotypic Characterization -- 5.6.5. Molecular Characterization -- 5.6.5.1. 16S rRNA, gyrB and rpoD amplifications -- 5.6.5.2. Sequencing and Phylogenetic Tree Analyses -- 5.6.5.3. Amplified Ribosomal DNA Restriction Analysis [ARDRA] -- 5.6.5.4. Electrophoresis -- 5.6.5.5. Random Amplified Polymorphic DNA [RAPD] -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES.
PRACTICAL USE OF PHOSPHATE SOLUBILIZINGSOIL MICROORGANISMS -- ABSTRACT -- 6.1. INTRODUCTION -- 6.2. PHOSPHORUS IN SOIL -- 6.3. MINERAL PHOSPHORUS FERTILIZATIONThe conventional approach to improve phosphorus nutrition for optimum crop -- 6.4. PHOSPHORUS MOBILIZATION AND SOLUBILIZATION -- 6.4.1. MOBILITY OF PHOSPHORUS IN SOIL -- 6.4.2. Possibilities of Phosphorus Mobilization -- 6.4.3. Mechanisms of P-Solubilization -- 6.5. FACTORS AFFECTING MINERAL P-SOLUBILIZATION -- 6.6. PRACTICAL USE OF P-SOLUBILIZING SOIL MICROORGANISMS -- 6.6.1. P-Solubilizing Bacteria -- 6.6.2. P-Solubilizing Fungi -- 6.7. DETERMINATION OF P-SOLUBILIZING ACTIVITYOF MICROORGANISMS -- 6.7.1. P-Solubilizing Activity in Liquid Cultures -- 6.8. INOCULATION EFFECTS -- CONCLUSION AND FUTURE PROSPECT -- ACKNOWLEDGMENTS -- REFERENCES -- PHOSPHATE-SOLUBILIZATION BY PSYCHROPHILICAND PSYCHROTOLERANT MICROORGANISMS:AN ASSET FOR SUSTAINABLE AGRICULTUREAT LOW TEMPERATURES -- ABSTRACT -- 7.1. INTRODUCTION -- 7.2. PSYCHROPHILIC AND PSYCHROTOLERANT MICROORGANISMS -- 7.3. LIMITATION IN SUSTAINABLE AGRICULTUREAT LOW TEMPERATURE -- 7.4. PHOSPHORUS AND SOIL FERTILITY -- 7.5. PHOSPHATE-SOLUBILIZING ACTIVITIES AT LOWAND AMBIENT TEMPERATURES -- 7.6. PSMS FOR SUSTAINABLE AGRICULTUREAT LOW TEMPERATURES -- 7.7. FIRST REPORTED PSYCHROTOLERANT MUTANTSFOR HIGHER ALTITUDES -- 7.8. ECONOMY PERSPECTIVE OF BACTERIALPHOSPHATIC FERTILIZER -- 7.9. FUTURE PROSPECTS -- CONCLUSION -- REFERENCES -- BENEFICIAL MICROBES IN SUSTAINABLETROPICAL CROP PRODUCTION -- ABSTRACT -- 8.1. INTRODUCTION -- 8.2. BIOFERTILIZERS -- 8.2.1. Benefits of Plant-Rhizobacteria Associations -- 8.2.1.1. Symbiotic Association -- 8.2.1.2. Associative Plant-Rhizobacteria Association -- 8.2.1.3. Phosphate Solubilizing Bacteria -- 8.2.1.4. Potassium Solubilizing Bacteria -- 8.2.2. Plant-Fungi Associations -- 8.2.2.1. Mycorrhizal Fungi.
8.2.2.1.1. Arbuscular Mycorrhizae -- 8.2.2.1.2. Ectomycorrhiza -- 8.2.2.2. Benefits of Mycorrhizal Fungi -- 8.2.2.2.1. Nutrient Uptake -- 8.2.2.2.2. Soil structure -- 8.2.2.2.3. Tolerance to Stress -- 8.2.2.2.4. Crop Protection -- 8.3. BIOENHANCER -- 8.3.1. Plant Growth Regulators -- 8.4. BIOFERTILIZER PRODUCTION AND APPLICATION -- 8.4.1. Bacterial Inoculum Production -- 8.4.1.1. Carrier Component -- 8.4.1.2. Inoculant Preparation and Packaging -- 8.4.2. Fungal Inoculum Production -- 8.4.2.1. Soil-Based Inoculum -- 8.4.2.2. Soil-Free Inocula -- 8.4.2.3. Inoculum Application -- 8.4.3. Biofertilizer Application -- 8.4.3.1. Mycorrhiza -- 8.4.3.2.1. Fertilization -- 8.4.3.2.2. Management of AM Fungi -- 8.4.3.3. Synergy between Beneficial Microorganisms -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- MOLECULAR GENETICS OF PHOSPHATESOLUBILIZATION IN RHIZOSPHERE BACTERIAAND ITS ROLE IN PLANT GROWTH PROMOTION -- ABSTRACT -- 9.1. INTRODUCTION -- 9.2. PHOSPHORUS AVAILABILITY IN SOILS -- 9.3. MICROORGANISMS INVOLVED IN SOLUBILIZATIONOF INORGANIC PHOSPHORUS -- 9.4. GENETICS OF PHOSPHATE SOLUBILIZATION -- 9.5. MECHANISM OF INORGANIC PHOSPHATE SOLUBILIZATION -- 9.5.1 Production of Organic Acids -- 9.4. GENETICS OF PHOSPHATE SOLUBILIZATION -- 9.5. MECHANISM OF INORGANIC PHOSPHATE SOLUBILIZATION -- 9.5.1 Production of Organic Acids -- 9.5.2. Production of Inorganic Acids -- 9.5.3. Other Mechanisms of Phosphate Solubilization -- 9.6. ORGANIC PHOSPHATE SOLUBILIZATION -- 9.6.1. Nonspecific Acid Phosphatases -- 9.6.2. Phytases -- 9.7. ISOLATION OF MINERAL PHOSPHATE SOLUBILIZING[MPS] GENES -- 9.7.1. Manipulation of MPS Genes for PGPR Improvement -- 9.8. AGRONOMIC SIGNIFICANCE OF MINERAL PHOSPHATESOLUBILIZING BACTERIA -- 9.8.1. Interactions of P-Solubilizing Bacteria with Other Beneficial Microbes -- CONCLUSION -- REFERENCES.
STRATEGIES FOR DEVELOPMENT OF MICROPHOSAND MECHANISMS OF PHOSPHATE-SOLUBILIZATION.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View