Cover image for Plasma Physics Research Advances.
Plasma Physics Research Advances.
Title:
Plasma Physics Research Advances.
Author:
Gromov, Sergei P.
ISBN:
9781617285622
Personal Author:
Physical Description:
1 online resource (416 pages)
Contents:
PLASMA PHYSICS RESEARCH ADVANCES -- CONTENTS -- PREFACE -- SHORT COMMUNICATION -- STATISTICAL ANALYSIS OF THE ELECTRICALBREAKDOWN TIME DELAY DISTRIBUTIONSIN GAS TUBES AT LOW PRESSURES -- Abstract -- 1. Introduction -- 2. Convolution Based Statistical Model -- 3. Experiment -- 4. Application of the Statistical Model on the Breakdown TimeDelay Distributions -- 4.1. Time Delay Distributions for Various Relaxation Times -- 4.2. Time Delay Distribution for Various Overvoltages and Distances betweenElectrodes -- 4.3. Time Delay Distribution for Various Values of Auxiliary Glow Current -- 4.4. Time Delay Distribution in the Presence of the UV and Radiation -- 5. Conclusion -- Acknowledgments -- References -- RESEARCH AND REVIEW STUDIES -- LINEAR COUPLING OF ELECTRON CYCLOTRONWAVES IN MAGNETIZED PLASMAS:BEYOND THE RANGE OF ONE-DIMENSIONALTHEORY* -- Abstract -- 1. Introduction -- 2. Linear Interaction between O and X Waves in One- and Two-Dimensional Cases -- 3. The Reference Wave Equations for the Two-DimensionalGeometry -- 4. Solution of the Reference Wave Equations -- 5. Expansion of the Green Functions in the WKB Region -- 6. Transformation Efficiency and the Optimum Beams -- 7. Transition to the One-Dimensional Case -- 8. Wave Field Distributions for an Incident Plane Wave andGaussian Beams -- 9. Transformation Coefficients for Gaussian Beams -- 10. Application to a Toroidal Magnetic Configuration -- 11. Modification of the Theory in the Small Poloidal Field Limit -- 12. Conclusion -- Acknowledgments -- References -- DISCHARGES IN GAS FLOW -- Abstract -- Introduction -- 1. Character of the Discharge -- 2. Heat-Exchange between the Arc and the Working Gas -- 3. Heating by Radiation in Nitrogen -- 4. Electrodes -- 4.1. Measurements of Surface Temperature of Electrodes -- 4.2. Working Regime of Electrodes -- The case of the alternative current.

4.3. Investigation of the Electrodes' Material -- 4.4. Run-Out of the Electrodes -- 5. Plasmatr -- 5.1. Main Principles -- 5.2. DC Plasma Generators -- 5.3. AC Plasma Generators -- 6. Plasma Technologies -- 6.1. General Description -- 6.2. Plasma High Temperature Oxidizing -- Plasma High Temperature Oxidizing of Hazardous Medical Waste -- 6.3. Plasma Destruction and Neutralization of Liquid Super Toxic Agents -- 6.4. Plasma Pyrolysis and Gasification -- Calculated Parameters and Estimations -- Experimental Large-Scale Facility -- 6.5. Coal Gasification for Liquid Fuel Production -- 6.6. Brief Review of the Plasma Pyrolysis Technologies Worldwide -- Conclusion -- References -- GENERATION MECHANISMS AND PHYSICALPROPERTIES OF ELECTRICAL DISCHARGESIN AND ABOVE WATER -- Abstract -- 1. Introduction -- 2. Pulsed Direct Liquid Phase Electrical Discharges -- 2.1. Initiation Phase or Streamer Inception -- 2.2. Streamer Propagation Phase -- 2.2.1. Influence of Polarity -- 2.2.2. Influence of Conductivity -- 2.2.3. Influence of Pressure -- 2.3. Spark and Arc Phase -- 3. Discharges in the Gas Phase with Water Electrode(s) -- 3.1. Discharges between a Metal andWater Electrode -- 3.1.1. Breakdown Initiation -- 3.1.2. Steady State Operation Plasma Properties -- 3.2. Discharges between TwoWater Electrodes -- 4. Diaphragm and Capillary Discharges -- 4.1. Characteristics of Capillary/Diaphragm Discharge -- 4.2. Water Vapor Plasma at a Metal Electrode Surface -- 5. Electrical Discharges in Gas/Vapor Bubbles -- 6. Discussion of the Different Discharge Types in View of the Application Potential -- 7. Conclusion -- References -- RECENT ADVANCES IN THE THEORYAND APPLICATION OF KINETIC ALFVÉ N WAVES -- Abstract -- 1. Introduction -- 2. Generation and Excitation of KAWs -- 2.1. Ion Beams -- 2.2. Resonant Mode Conversion -- 2.3. Hybrid Waves.

2.4. Electrostatic Ion Cyclotron Waves -- 2.5. Other Mechanisms -- 3. Linear KAW-Heavy Ion Interaction -- 3.1. Three-Fluid Model of KAWs -- 3.2. Effects of Heavy Ions on KAWs -- 3.3. Effects of Heavy Ions on KAWs Modified by Finite Frequency Effects -- 4. Nonlinear KAW-Heavy Ion Interaction -- 4.1. Basic Equations and Localized Solutions -- 4.2. Numerical Solutions and Effects of Heavy Ions on SKAWs -- 5. Energetic Phenomena of Ions in the Solar Atmosphere -- 5.1. Energization of Minor Heavy Ions by Nonlinear KAWs -- 5.2. Application to Minor Ions Energization in Coronal Holes -- 6. Conclusion -- Acknowledgements -- References -- EFFECT OF EXTERNAL FIELDS ON PROPERTIESOF MACROSCOPIC PLASMAS FROM THE QUANTUMMECHANICAL VIEWPOINT -- Abstract -- 1. Introduction -- 2. Effect of External Fields on the Properties of Plasmasfrom a Quantum Mechanical Viewpoint -- 2.1. Scattering Mechanism and Formalism -- 2.1.1. Schrödinger Equation and the Unitary Operator U -- 2.1.2. The Screened Potential -- 2.2. Energy Absorption Rate -- 3. Macroscopic Plasma in the Presence of External Fieldswithout a Magnetostatic Field -- 3.1. Determination of the Dielectric Function -- 3.2. Frequencies of the Collective Oscillations -- 3.3. Dispersion Relation for a Maxwellian Distribution -- 4. Modulation of the Dielectric Properties for a MagnetizedMacroscopic Plasma -- 4.1. Magnetostatic Field Parallel to the Time-Dependent Component of theElectric Field -- 4.2. Magnetostatic Field Orthogonal to the Time-Dependent Componentof the Electric Field -- 4.2.1. Dielectric Function -- 4.2.2. Determination of the Frequencies for the Collective Oscillations -- 4.2.3. Electron Cyclotronic Resonance -- 5. Conclusion -- References -- ADVANCES IN RESEARCH ON LOW-PRESSURECAPACITIVELY COUPLED PLASMAS -- Abstract -- 1. Introduction -- 2. Characteristics and Classification of CCP Devices.

2.1. Conventional CCPs -- 2.2. Multiple-Frequency CCPs -- 2.3. High-Frequency CCPs -- 2.4. Magnetized CCPs -- 2.5. Other CCPs -- 2.5.1. Dielectric lens CCPs -- 2.5.2. Grid CCPs -- 3. Modeling and Simulations of CCPS -- 3.1. Sheath Model -- 3.1.1. Conventional CCPs -- 3.1.2. Dual-Frequency CCPs -- 3.2. Analytic Global Model -- 3.2.1. Conventional CCPs -- 3.2.2. Dual-Frequency CCPs -- 3.3. Self-Consistent Simulations -- 4. Physics of CCPs -- 4.1. Electron Kinetics and Dynamics -- 4.1.1. Nonlocal Electron Kinetics -- 4.1.2. Stochastic/Ohmic Heating Mechanisms -- 4.1.3. Bounce Resonance Heating of Low-Energy Electrons -- 4.2. Ion Dynamics under the rf Sheath Modulation -- 4.2.1. Conventional CCPs -- 4.2.2. Dual-Frequency CCPs -- 4.3. Power Dissipation Mode Transition -- 4.4. Wave Effect in High-Frequency CCPs -- 5. Conclusion -- Acknowledgements -- References -- MASS-SPECTROMETRY STUDIES IN RFCAPACITIVELY COUPLED DISCHARGES -- Abstract -- 1. Introduction -- 2. Experimental Setup -- 2.1. Experimental Device -- 2.2. Mass-Spectrometer -- 3. Experimental Data -- 3.1. Argon -- 3.2. Oxygen -- 3.3. Hydrogen -- 3.4. Argon-Oxygen -- 3.5. Argon-Hydrogen -- Conclusion -- Acknowledgments -- References -- THEORY AND APPLICATION OF THE GENERALIZEDBALESCU-LENARD TRANSPORT FORMALISM -- Abstract -- 1. Introduction -- 2. Action-Angle Transport Theory in Toroidal Geometry -- 2.1. Action-Angle Variables and Normal Mode Decomposition -- 2.2. Quasi-linear and Self-consistent Action-Angle Collision Operator -- 2.3. Specialization to Large Aspect-Ratio Tokamaks -- 3. General Radial Transport Law -- 4. Transport Equations -- 5. General expressions of particle and energy flux and source -- 6. Transport Coefficients -- 6.1. "Non-drifting" Fluxes -- 6.2. Particle Pinch -- 6.3. Low and High Confinement Regimes -- 7. Energy Exchange -- 7.1. Trapped Electron Mode (TEM) Turbulence.

7.2. Comparison with Quasilinear Results -- 8. An Electron Transport Model for Magnetic Turbulence -- 8.1. Fluctuation Spectrum for Magnetic Micro-turbulence -- 8.2. Limiting Forms of the Xχ and Y χ Factors -- 8.2.1. Deeply-Trapped Limit -- 8.2.2. Far-Untrapped Limit -- 8.3. Evaluation of the Fluxes for Far-Untrapped Electrons -- 8.3.1. Ordering -- 8.3.2. Fluxes -- 8.4. Evaluation of the Sources for Far-untrapped Electrons -- 8.5. Momentum Transport and Ohm's Law -- 8.5.1. Order-of-Magnitude Expressions -- 8.6. Comparison of Transport Coefficients -- 9. Turbulent gBL Collision Operator -- 10. Summary -- Acknowledgments -- References -- CHAOTIC MOTION OF RELATIVISTIC ELECTRONSDRIVEN BY WHISTLER WAVES -- Abstract -- 1. Introduction -- 2. Basic Equations -- 3. Qualitative Analysis of the Particle Motion -- 4. Relativistic Particle Dynamics in a CoherentWave Packet -- 5. Stochastic Attractors of the System -- 6. Particle Stochastic Heating -- 7. Application -- 8. Summary -- Reference -- THERMODYNAMIC AND TRANSPORT PROPERTIESOF NON-IDEAL COMPLEX PLASMA -- Abstract -- Introduction -- 1. Effective Interparticle Interaction Potentials of Non-ideal Plasma -- 1.1. Effective Potentials for Charge-Charge Interaction -- The System Parameters -- Effective Potentials -- 1.2. Effective Potentials for Charge-Atom Interaction -- 2. Collision Processes in Partially Ionized Plasma -- 2.1. Phase Shifts and Scattering Cross Sections -- 2.2. Bremsstrahlung Cross Section and Absorption Coefficient -- 3. Thermodynamic Properties of Non-ideal Semiclassical Plasma -- 3.1. Composition of Partially Ionized Hydrogen and Helium Plasma -- 3.2. Structure Properties of Dense Semiclassical Plasma -- 3.3. Thermodynamic Functions of Dense Semiclassical Hydrogen andHelium Plasma -- 4. Dynamic and Transport Properties of Dusty Plasma on theBasis of the Langevin Dynamics.

4.1. Langevin Dynamics Method.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: