
Functionally Graded Materials.
Title:
Functionally Graded Materials.
Author:
Reynolds, Nathan J.
ISBN:
9781620818855
Personal Author:
Physical Description:
1 online resource (336 pages)
Series:
Materials Science and Technologies
Contents:
FUNCTIONALLY GRADED MATERIALS -- FUNCTIONALLY GRADED MATERIALS -- CONTENTS -- PREFACE -- A LINEAR MULTI-LAYERED MODEL AND ITS APPLICATIONS IN FRACTURE AND CONTACT MECHANICS OF ELASTIC FUNCTIONALLY GRADED MATERIALS -- 1. INTRODUCTION -- 2. MATHEMATICAL MODELING OF FGMS -- 2.1. Basic Equations -- 2.1.1. Plane Problem -- 2.1.2. Antiplane Problem -- 2.1.3. Axisymmetric Problem -- 2.1.3. Axisymmetric Torsion Problem -- 2.2. Exponential Model -- 2.2.1. General Solutions of Plane Problem in Fourier Transform Domain -- 2.2.2. General Solutions of Antiplane Problem in Fourier Transform Domain -- 2.2.3. General Solutions of Axisymmetric Problem in Hankel Transform Domain -- 2.2.4. General Solutions of Axisymmetric Torsion Problem in Hankel Transform Domain -- 2.3. HML Model -- 2.3.1. General Solutions of Plane Problem in Fourier Transform Domain -- 2.3.2. General Solutions of Antiplane Problem in Fourier Transform Domain -- 2.3.3. General Solutions of Axisymmetric Problem in Hankel Transform Domain -- 2.3.4. General Solutions of Axisymmetric Torsion Problem in Hankel Transform Domain -- 2.4. Linear Multi-Layered (LML) Model -- 2.4.1. General Solutions of Plane Problem in Fourier Transform Domain -- 2.4.2. General Solutions of Antiplane Problem in Fourier Transform Domain -- 2.4.3. General Solutions of Axisymmetric Problem in Hankel Transform Domain -- 2.4.4. General Solutions of Axisymmetric Torsion Problem in Hankel Transform Domain -- 3. FRACTURE MECHANICS OF FGMS -- 3.1. Plane Fracture -- 3.1.1. Transfer Matrix and Dual Integral Equations -- 3.1.2. Cauchy Singular Integral Equations -- 3.1.3. Numerical Examples -- 3.2. Antiplane Fracture -- 3.2.1. Transfer Matrix and Dual Integral Equations -- 3.2.2. Cauchy Singular Integral Equation -- 3.2.3. Numerical Examples -- 3.3. Axisymmetric Fracture -- 3.3.1. Transfer Matrix and Dual Integral Equations.
3.3.2. Singular Integral Equation and Stress Intensity Factor -- 3.3.4. Numerical Examples -- 3.4. Dynamic Fracture -- 3.4.1. Formulation -- 3.4.2. Numerical Examples -- 4. CONTACT MECHANICS OF FGMS -- 4.1. Plane Sliding Frictional Contact -- 4.1.1. Fundamental Solutions to an FGM Coated Half-Plane -- 4.1.2. Punch Problems for an FGM Coated Half-Plane -- 4.1.3. On the Solution of the Integral Equations and the Contact Stresses on the Surface -- 4.1.4. Examples -- (i) Rigid Flat Punch -- (ii) Rigid Triangular Punch -- (iii) Rigid Cylindrical Punch -- (iv) Rigid Wedge-Shaped Punch -- 4.1.5. Numerical Examples -- 4.2. Plane Normal Contact with Finite Friction -- 4.2.1. Formulation -- 4.2.2. The Goodman Approximation -- 4.2.3. Fully Coupled Normal Contact -- 4.2.4. Numerical Examples -- 4.3. Plane Fretting Contact Problem -- 4.3.1. A Monotonically Increasing Tangential Load -- 4.3.2. A Cycled Tangential Load -- 4.3.2. Numerical Examples -- 4.4. Axisymmetric Contact Mechanics -- 4.4.1. Fundamental Solutions to an FGM Coated Half-Space -- 4.4.2. Axisymmetric Frictionless Contact Problem for an FGM Coated Half-Space -- 4.4.3. Examples -- (i) Frictionless Rigid Flat Circular Punch -- (ii) Frictionless Rigid Spherical Punch -- (iii) Frictionless Rigid Conical Punch -- 4.4.4. Numerical Examples -- 4.5. Axisymmetric Normal Contact -- 4.5.1. Formulation -- 4.5.3. Numerical Examples -- 4.6. Axisymmetric Fretting Contact -- 4.6.1. Normal Contact Pressure -- 4.6.2. Monotonically Increasing Torsional Loading -- 4.6.3. Cyclic Torsional Loading -- 4.6.4. Numerical Examples -- REFERENCES -- FUNCTIONALLY GRADED MATERIALS OBTAINED BY COMBUSTION SYNTHESIS TECHNIQUES: A REVIEW -- ABSTRACT -- 1. FUNCTIONALLY GRADED MATERIALS: MANUFACTURING PROCESSES -- 2. COMBUSTION SYNTHESIS -- 2.1. Main Advantages of Combustion Synthesis.
2.2. Types of CS Reactions and Obtained Products and Materials -- 2.3. Ignition Techniques -- 2.3.1. Microwaves and Combustion Synthesis -- 3. FGMS OBTAINED BY CS TECHNIQUES -- 3.1. Ceramic-Based FGMs -- 3.2. Cermets and Intermetallic Matrix Based FGMs -- 3.3. Metal- and/or Intermetallic-Based FGMs -- CONCLUSION -- REFERENCES -- THE METHOD OF FUNDAMENTAL SOLUTIONS FOR THERMOELASTIC ANALYSIS OF FUNCTIONALLY GRADED MATERIALS -- ABSTRACT -- 1. INTRODUCTION -- 2. MATHEMATICAL FORMULATION -- 2.1. Basic Equations of Heat Conduction in FGMs -- (1) Heat Conduction Equation -- (2) Thermal boundary and initial conditions -- 2.2. Basic Equations of Thermoelasticity in FGMs -- (1) Governing Equations -- (2) Mechanical Boundary Conditions -- 3. MATERIAL PROPERTIES OF FGMS -- (1) Power-Law Type FGM (P-FGM)[30] -- (2) Exponential Type FGM (E-FGM)[31] -- 4. THE METHOD OF FUNDAMENTAL SOLUTIONS FOR THERMAL ANALYSIS -- 4.1. Complementary Solutions -- 4.2. Particular Solutions -- 4.3. Complete Solutions -- 4.4. Numerical Examples -- Example 4.4.1. Thermal shock problem. -- Example 4.4.2. Thermal shock problem. -- 5. THE METHOD OF FUNDAMENTAL SOLUTIONS FOR THERMOELASTIC ANALYSIS -- 5.1. Complementary Solutions -- 5.2. Particular Solutions -- 5.3. Complete Solutions -- 5.4. Numerical Examples -- CONCLUSION -- REFERENCES -- THREE-DIMENSIONAL THERMAL BUCKLING ANALYSIS OF FUNCTIONALLY GRADED ARBITRARY STRAIGHT-SIDED QUADRILATERAL PLATES -- ABSTRACT -- 1. INTRODUCTION -- 2. THEORETICAL FORMULATION -- 2.1. FGMs Relations -- 2.2. Pre-Buckling Analysis -- 2.3. Thermal Buckling Equations -- 2.4. DQ Solution Procedure -- 3. NUMERICAL RESULTS -- CONCLUSION -- APPENDIX A -- REFERENCES -- THE MECHANICAL RESPONSE OF METAL-CERAMIC FUNCTIONALLY GRADED MATERIALS: MODELS AND EXPERIENCES -- ABSTRACT -- INTRODUCTION -- CONSTITUTIVE MODELS FOR METAL-CERAMIC COMPOSITES -- Elasticity.
Plasticity -- Fracture -- MATERIAL CHARACTERIZATION -- EXPERIMENTAL VALIDATION -- CONCLUSION -- REFERENCES -- SIMULATION OF QUASI-STATIC CRACK PROPAGATION IN FUNCTIONALLY GRADED MATERIALS -- Abstract -- 1.Introduction -- 1.1.TheProblemofElasticityinFunctionallyGradedMaterials -- 1.2.BasicRegularityResultsandEnergySolutions -- 2.AsymptoticBehavioroftheDisplacementFieldNeartheCrackTip -- 2.1.TheCaseofHomogeneousMaterials -- 2.2.TheCaseofInhomogeneousMaterials -- 2.3.CalculationofStressIntensityFactors -- JUSTIFICATION -- 3.FractureCriterion-theEnergyPrinciple -- ASYMPTOTICANALYSIS -- ASYMPTOTICEXPANSIONOFTHECHANGEOFPOTENTIALENERGY -- 3.1.TheChangeofPotentialEnergyinHomogeneousMaterials -- CONSTRUCTIONOFANINNERANDOUTEREXPANSION -- THECONNECTIONTOTHEIRWINFRACTURECRITERION -- 3.2.TheChangeofPotentialEnergyinInhomogeneousMaterials -- 4.NumericalSimulationofQuasi-StaticCrackPropagation -- 4.1.ComputationofGlobalIntegralCharacteristics -- 4.2.ComputationofLocalIntegralCharacteristics -- 5.Examples -- 5.1.NumericalResultsforHomogeneousMaterials -- 5.2.NumericalResultsforaFunctionallyGradedMaterial -- 6.Conclusion -- References -- CYLINDRICALLY-OR SPHERICALLY-SYMMETRIC PROBLEMS OF FUNCTIONALLY GRADED MATERIALS -- Abstract -- 1.Introduction -- 2.HollowFGMCylinders -- 3.HollowFGMSpheres -- 4.RotatingHollowFGMAnnuli -- 5.ThermoelasticFGMCylinders -- 5.1.Steady-StateThermoelasticAnalysis -- 5.2.TransientThermoelasticAnalysis -- 6.ElectroelasticProblemsofFGMs -- 6.1.FunctionallyGradedPiezoelectricHollowCylinders -- 6.2.FunctionallyGradedPiezoelectricSphericalShells -- 7.Conclusion -- References -- FUNCTIONALLY GRADED FOAMS FOR FILTER FABRICATION -- ABSTRACT -- RECENT DEVELOPMENTS -- PRODUCTION OF FUNCTIONALLY GRADED FOAMS -- THE FOAM CHARACTERIZATION -- CONCLUSION -- REFERENCES -- INDEX.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View