
DIRECT NUCLEAR REACTIONS.
Title:
DIRECT NUCLEAR REACTIONS.
Author:
Glendenning, Norman K.
ISBN:
9789812562104
Personal Author:
Physical Description:
1 online resource (397 pages)
Contents:
Direct Nuclear Reactions -- Contents -- Preface -- Acknowledgments -- Notational Conventions -- 1. Introduction: Direct and Compound Nuclear Reactions -- A. The Observables -- B. Direct and Compound Nuclear Reactions -- C. Competition between Direct and Compound Nuclear Reactions -- D. Historical Note -- 2. The Plane-Wave Theory -- Notes to Chapter 2 -- 3. Scattering Theory and General Results -- A. Motivation -- B. The Nuclear Shell Model -- C. Reaction Channels or Partitions -- D. Integral Equations and the Scattering Amplitude -- E. Asymptotic Form of the Complete Wave Function -- F. The First Born Approximation -- G. Cross Section -- Notes to Chapter 3 -- 4. The Phenomenological Optical Potential -- A. Rationale for the Optical Potential -- B. Partial Wave Expansion, the Radial Wave Function, Its Asymptotic Behavior -- C. Elastic Scattering Amplitude -- D. Coulomb and Nuclear Potentials -- E. Parametrization of the Optical Potential -- F. Elastic Scattering of Alpha Particles -- G. Spin-Orbit Interaction and Nucleon Elastic Scattering -- H. Elastic Scattering of Heavy Ions -- I. The Imaginary Potential and Mean Free Path -- J. Systematics of the Parameters -- K. Nonlocality of the Optical Potential -- L. Convergence of the Partial Wave Sum -- Notes to Chapter 4 -- 5. Distorted-Wave Born Approximation -- A. Introduction -- B. Distorted-Wave Green's Functions -- C. The Gell-Mann-Goldberger Transformation -- D. Two-Potential Formula -- E. The DWBA Transition Amplitude -- F. Discussion of the Approximations -- G. Antisymmetrization -- H. Multipole Expansion of the Transition Amplitude -- Notes to Chapter 5 -- 6. Operator Formalism -- A. Introduction -- B. Lippmann-Schwinger Equation -- C. Formal Solution -- D. Transition Amplitude -- E. Transition Operator T -- F. Gell-Mann-Goldberger Transformation -- G. Distorted-Wave Green's Function.
H. Distorted-Wave Born Approximation -- I. Second Distorted-Born Approximation -- J. Multiple-Scattering Series of Watson -- K. Green's Theorem and the Hermitian H -- Notes of Chapter 6 -- 7. Calculation of the DWBA Amplitude -- A. Introduction -- B. The (d,p) Stripping Reaction -- C. Zero-Range Approximation -- D. Examples -- E. Improvements within the Framework of the DWBA -- F. Spectroscopic Factors for One-Nucleon Transfer -- G. Pairing Theory in Nuclear Structure -- H. Inelastic Excitation of Surface Vibrations -- I. Inelastic Excitation of Nuclear Rotational Levels -- J. Inelastic Excitation of Single-Nucleon States -- K. Charge-Exchange Reactions -- L. Distorted-Wave Impulse Approximation -- M. Coulomb Excitation -- Notes to Chapter 7 -- 8. Coupled Equations and the Effective Interaction -- A. Coupled Equations for Inelastic Scattering -- B. Truncation and Effective Interactions -- C. The Effective Interaction -- D. Nonlocality -- E. Multiple-Scattering Series for the Effective Interaction -- F. Partial-Wave Expansion -- G. Boundary Conditions -- H. Distorted-Wave Born Approximation -- I. Cross Sections -- 9. Microscopic Theory of Inelastic Nucleon Scattering from Nuclei -- A. The Richness of Nuclear Structure -- B. Discussion of the Interactions in the Coupled Equations -- C. Matrix Elements of the Effective Interaction -- D. Selection Rules -- E. Nuclear Form Factor -- F. Single-Particle Form Factors -- G. Nuclear Structure Amplitudes -- H. Shell-Model Configurations -- I. Particle Creation and Destruction Operators -- J. Particle-Hole Configurations -- K. Quasi-Particle Configurations -- L. Recapitulation -- M. The Direct Interaction and Its Spin Dependence -- N. Selection Rules and the Direct Interaction -- O. Application of the Theory -- Notes to Chapter 9 -- 10. Core Polarization.
11. Effective Interactions and the Free Nucleon-Nucleon Force -- A. Introduction -- B. The Free-Nucleon-Nucleon Interaction -- C. The Brueckner G Matrix -- D. Bare G Matrix and Core Polarization -- E. Effective Interaction in Scattering -- F. Low-Energy Domain -- G. High-Energy Domain (E > 100 MeV) -- H. Microscopic Calculation of the Optical Potential -- 12. Further Developments in the Theory of Inelastic Scattering -- A. Introduction -- B. General Form of the Two-Body Amplitude -- C. Local Coordinate-Space Representation of G or t -- D. Energy and Momentum Dependence of the Effective Interaction in the High-Energy Domain -- E. Effective Operator for the Exchange Contribution -- F. Multipole Expansion of the Interaction -- G. Transition Densities -- H. Cross Sections -- I. Applications -- 13. Scattering from Deformed Rotational Nuclei -- A. Wave Functions of Deformed Nuclei -- B. Multipole Expansion of the Interaction -- C. Coupled Equations -- D. Relationship between Optical Potential of Spherical and Deformed Nuclei -- E. Alpha Scattering from Deformed Rare-Earth Nuclei -- Notes to Chapter 13 -- 14. Calculation of Specific Components of the Optical Potential -- A. Introduction -- B. Potential Components of a Single Level -- C. Trivially Equivalent Local Potential -- D. Long-Range Absorption Due to Coulomb Excitation -- 15. Two-Nucleon Transfer Reactions -- A. Contrast between One- and Two-Nucleon Transfer Reactions -- B. Transfer from a Light-Ion Projectile -- C. Spin-Isospin Selection Rules -- D. Form Factor -- E. Interpretation of the Form Factor -- F. Transition Amplitude and Cross Section -- G. Correlations -- H. Parentage Amplitude for Two Nucleons -- 16. Finite-Range Interaction in Transfer Reactions -- A. Introduction -- B. The DWBA Amplitude and Its Coordinate Dependences -- C. Parentage Expansions -- D. The (t,p) Reaction.
E. Two-Nucleon Transfer between Heavy Ions -- 17. Higher-Order Processes in Particle Transfer Reactions -- A. Beyond the DWBA -- B. Coupled-Channel Born Approximation (Generalized DWBA) -- C. Source-Term Method -- D. Derivation of the CCBA -- E. Coupled Reaction Channels (CRC) -- F. Partial-Wave Expansions and Derivation of the Cross Section -- G. Two-Nucleon Transfer between Vibrational Nuclei -- H. Two-Nucleon Transfer between Rotational Nuclei -- I. Indirect Transitions in Analog Reactions -- 18. Heavy-Ion Reactions -- A. Special Features -- B. The Potential -- C. Deflection Function, Classical Conditions, Plunging Orbits, Grazing Peak -- D. Elastic and Inelastic Scattering and the Optical Potential -- E. Indirect Transitions in Two-Nucleon Transfer, Opposite Behavior for Stripping and Pickup -- F. Forward-Angle Ripples, Uncertainty Principle -- G. Structure of the S Matrix, Speculations on Future Developments -- H. Summary -- Notes to Chapter 18 -- 19. Polarizability of Nuclear Wave Functions in Heavy-Ion Reactions -- A. Introduction -- B. The Experimental Facts -- C. A Possible Explanation -- D. Adiabatic Estimate -- E. Dynamical Description of Polarizability -- Appendix Some Useful Reminders -- A. Laplace Operator -- B. Spherical Harmonics -- C. Angular-Momentum Coupling -- Clebsch-Gordan Coefficients -- D. Angular-Momentum Recoupling -- E. Spherical Tensors -- F. Reduced Matrix Elements-Wigner-Eckart Theorem -- G. Scalar Product of Two Commuting Tensors -- H. Vector Product of Two Commuting Tensors -- I. Vector and Vector Product -- J. Reduced Matrix Element of Spin Operator -- K. Rotation Functions -- L. Oscillator Functions -- M. Spherical Bessel Functions -- Notes to Appendix -- References -- Index.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View