
Innovative Approaches to Undergraduate Mathematics Courses Beyond Calculus.
Title:
Innovative Approaches to Undergraduate Mathematics Courses Beyond Calculus.
Author:
Maher, Richard J.
ISBN:
9781614443049
Personal Author:
Physical Description:
1 online resource (188 pages)
Series:
Notes ; v.67
Notes
Contents:
cover -- copyright page -- title page -- Preface -- Initial Comments -- Some Specifics -- The First Chapter -- The Second Chapter -- The Third Chapter -- Conclusion -- Contents -- 1 Papers Covering Several Courses -- Introduction -- 1.1 Using Writing and Speaking to Enhance Math Courses, Nadine C. Myers -- 1.1.1 Introduction -- 1.1.2 Teaching Students to Write Mathematically -- Teaching Students to Write Proofs -- Writing and Speaking Activities -- 1.1.3 Grading -- 1.1.4 Conclusions -- Instructor's Observations -- Student Reactions -- Appendix A -- Appendix B -- References -- 1.2 Enhancing the Curriculum Using Reading, Writing, and Creative Projects, Agnes Rash -- 1.2.1 Introduction -- section on Showcasing Student Accomplishments.1.2.2 Reading about the Subject -- 1.2.3 Student Projects -- Putting it all Together: An Example from a Number Theory Course -- Puting it all Together in Probability and Statistics -- 1.2.4 Showcasing Student Accomplishments -- 1.2.5 Other Creative Endeavors -- 1.2.6 Conclusion -- References -- 1.3 How to Develop an ILAP, Michael Huber and Joseph Myers -- 1.3.1 Introduction -- Developing and Executing ILAPs -- 1.3.2 Strategy for Using ILAPs -- 1.3.3 Considerations when Developing an ILAP -- 1.3.4 Guidance for Students on Written Reports -- 1.3.5 Grading -- 1.3.6 Student Feedback -- 1.3.7 Conclusions -- References -- 1.4 The Role of the History of Mathematicsin Courses Beyond Calculus, Herbert E. Kasube -- 1.4.1 Introduction -- 1.4.2 Graph Theory -- 1.4.3 Combinatorics -- 1.4.4 Abstract Algebra -- 1.4.5 Number Theory -- 1.4.6 Other Courses -- 1.4.7 Assessment -- 1.4.8 Where do you find this stuff? -- 1.4.9 Conclusion -- References -- 1.5 A Proofs Course that Addresses Student Transition to Advanced Applied Mathematics Courses, Michael A. Jones and Arup Mukherjee -- 1.5.1 Introduction.
1.5.2 Fitting the Proofs Course into the Institution -- 1.5.3 Outline, Description, and Philosophy -- 1.5.4 Some Specific Mathematical Content -- 1.5.5 From Theory to Practice: Assessing the Outcomes of the Proofs Course -- 1.5.6 Modifying this Course to Other Institutions -- 1.5.7 Conclusion -- References -- 2 Course-Specific Papers -- Introduction -- 2.1 Wrestling with Finite Groups -- Abstract Algebra need not be Passive Sport, Jason Douma -- 2.1.1 Introduction -- 2.1.2 Objective -- 2.1.3 Background -- 2.1.4 Searching for a New Approach -- 2.1.5 Allocating Time for the Project -- 2.1.6 The Project Assignment -- 2.1.7 The Project as Source of Content -- 2.1.8 Creative Output -- 2.1.9 Assessing Student Development -- 2.1.10 Assessing the Course -- 2.1.11 Conclusion -- References -- 2.2 Making the Epsilons Matter, Stephen Abbott -- 2.2.1 Calculus or Analysis? -- Truth plays such odd pranks -- A shift of emphasis, not content -- 2.2.2 Sample Assignments -- Sets of Discontinuity -- A Continuous Nowhere- Differentiable Function -- The Generalized Riemann Integral -- 2.2.3 The Task of the Educator -- References -- 2.3 Innovative Possibilities for Undergraduate Topology, Samuel Bruce Smith -- 2.3.1 Introduction -- 2.3.2 Motivating the Abstraction -- 2.3.3 Structuring a Course -- Problem Sets -- In-Class Assignments -- Student Presentations -- 2.3.4 Independent Research Directions -- Analysis -- Geometry -- Set Theory and Foundations -- Combinatorics -- Algebra -- Computer Science -- 2.3.5 Attracting Students -- 2.3.6 Conclusion -- References -- 2.4 A Project-Based Geometry Course, Jeff Connor and Barbara Grover -- 2.4.1 Introduction -- 2.4.2 The General Approach -- 2.4.3 The Motivation for Change -- 2.4.4 Course Description -- Changes Related to Content -- The Use of Structured Cooperative Groups -- The Use of Technology and Manipulatives.
Assessment -- 2.4.5 Some Sample Projects -- First Project: Area -- Second Project: Angle Sums -- Further Projects -- 2.4.6 Student Reaction and Performance -- 2.4.7 Some Things to be Aware of -- 2.4.8 Conclusion -- References -- 2.5 Discovering Abstract Algebra:A Constructivist Approach to Module Theory, Jill Dietz -- 2.5.1 Introduction -- 2.5.2 Active Learning -- Moore Method -- Modified Moore Method -- Constructivism -- Guided Discovery in the Modules Course -- 2.5.3 Course Scheme -- 2.5.4 A Typical Day -- 2.5.5 The Students -- Background -- Assessment -- Student Interactions -- Reactions -- 2.5.6 Conclusion -- References -- 3 Papers on Special Topics -- Introduction -- 3.1 The Importance of Projects in Applied Statistics Courses, Tim O'Brien -- 3.1.1 Introduction -- 3.1.2 An Introductory Biostatistics Course -- Class Projects -- Example: Jennifer Huston -- Example: Nick Moisan -- 3.1.3 An Advanced Biostatistics Course -- Example: Mike Evans and Bahram Patel -- 3.1.4 Subsequent Applied Statistics Courses -- Example: Dara Mendez -- Example: Paul Bell -- Example: William Burroughs -- 3.1.5 Independent Study Courses -- Example: Lisa Leigh and Katie Hanrahan -- Example: Paul Bell and Nick Pajewski -- 3.1.6 Evaluation and Assessment -- 3.1.7 Conclusion -- References -- 3.2 Mathematical Biology Taught to a Mixed Audience at the Sophomore Level, Janet Andersen -- 3.2.1 Introduction -- 3.2.2 Logistics and Course Objectives -- 3.2.3 Assessment and Results -- 3.2.4 Implementation Issues -- 3.2.5 Conclusion -- References -- 3.3 A Geometric Approach toVoting Theory for Mathematics Majors, Tommy Ratliff -- 3.3.1 Introduction -- 3.3.2 A Brief Survey of the Course Content -- The Representation Triangle -- Decomposition of R^6 -- Sample Problems -- Other Topics -- 3.3.3 Assignments and Future Plans -- 3.3.4 Conclusions -- References.
3.4 Integrating Combinatorics, Geometry, and Probability through the Shapley-Shubik Power Index, Matthew J. Haines and Michael A. Jones -- 3.4.1 Introduction -- 3.4.2 Simple Weighted-Voting Games and the Shapley-Shubik Power Index -- 3.4.3 Possible Shapley-Shubik Indices -- 3.4.4 Discrete Approach to Probabilistic Questions -- 3.4.5 Geometrical Interpretation of the Shapley-Shubik Power -- 3.4.6 Guidelines for Use -- General Education Requirement Course -- Overview for Advanced Courses Including Modeling -- Undergraduate Applied Combinatorics -- 3.4.7 Conclusion -- References -- 3.5 An Innovative Approach to Post-Calculus Classical Applied Math, Robert J. Lopez -- 3.5.1 Introduction -- 3.5.2 Background Details -- 3.5.3 Example 1 -- Evaluation of the Convolution by the Convolution Theorem -- Evaluation of the Convolution by the Convolution Integral -- 3.5.4 Example 2 -- Coupled Systems -- Uncoupled Systems -- Uncoupling Coupled Equations -- 3.5.5 Conclusion -- References -- About the Editor.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View