Cover image for Stereochemistry of Organic Compounds : Principles and Applications.
Stereochemistry of Organic Compounds : Principles and Applications.
Title:
Stereochemistry of Organic Compounds : Principles and Applications.
Author:
Nasipuri, D.
ISBN:
9781781830574
Personal Author:
Edition:
4th ed.
Physical Description:
1 online resource (560 pages)
Contents:
Cover -- Foreword -- Preface -- Chapter 1 Molecular Geometry and Chemical Bonding -- 1.1 Introduction -- 1.2 Molecular structure and chemical bonding -- 1.2.1 Bond length, bond angle, and dihedral angle -- 1.2.2 Covalent radii and van der Waals atomic radii -- 1.3 Hybridisation and Chemical Bonding -- 1.3.1 Hybridisation and bond angles -- 1.3.2 Bond angle deformation in small ring compounds -- 1.4 Hydrogen Bonding -- 1.5 Rotation around Bonds and Change in Dihedral Angle -- 1.5.1 Rotation around a single bond -- 1.5.2 Rotation around a double bond -- 1.5.3 Restricted rotation around intermediate (hybrid) bonds -- 1.6 Catenanes -- 1.7 Summary -- References -- Chapter 2 Molecular Symmetry and Chirality -- 2.1 Introduction -- 2.2 Symmetry Operations and Symmetry Elements -- 2.2.1 Simple or Proper Axis of Symmetry -- 2.2.2 Plane of Symmetry -- 2.2.3 Centre of Symmetry or Inversion Centre -- 2.2.4 Improper or alternating or rotation-reflection axis -- 2.3 Point Group Classification -- 2.4 Molecular Symmetry and Chirality -- 2.5 Point groups and Symmetry Number -- 2.6 Summary -- Chapter 3 Stereoisomerism: Definitions and Classification -- 3.1 Introduction -- 3.2 Molecular Representation -- 3.3 Classification of Stereoisomers -- 3.3.1 Classification Based on Symmetry Criterion -- 3.3.2 Classification Based on Energy Criterion -- 3.4 Stereoisomerism, Conformation, and Chirality -- 3.5 Racemic Modifications -- 3.5.1 Racemic Modifications and Thermodynamic Properties -- 3.5.2 Classification of Racemic Modifications -- 3.5.3 Quasi-racemates -- 3.6 Summary -- References -- Chapter 4 Stereoisomerism and Centre of Chirality -- 4.1 Introduction -- 4.2 Molecules with a Single Chiral (Stereogenic) Centre -- 4.2.1 Chiral Manifestations -- 4.2.2 Molecules with a Tetracoordinate Chiral Centre -- 4.2.3 Molecules with a Tricoordinate Chiral Centre.

4.3 Configurational Nomenclature -- 4.3.1 Fischer's D and L nomenclature -- 4.3.2 R and S nomenclature -- 4.3.3 R* and S* Nomenclature -- 4.3.4 CIP Nomenclature of Racemates -- 4.3.5 Nomenclature of Polysubstituted Cyclanes -- 4.4 E and Z Nomenclature -- 4.5 Molecules with a Centre of Chirality and Simple Axes of Symmetry (Cn) -- 4.6 Molecules With Two and More Chiral Centres -- 4.6.1 Constitutionally Unsymmetrical Chiral Molecules -- 4.6.2 Constitutionally Symmetrical Chiral Molecules -- 4.6.3 Stereoisomerism in Cyclic Compounds -- 4.7 Summary -- References -- Chapter 5 Stereoisomerism : Axial Chirality, Planar Chirality and Helicity -- 5.1 Introduction -- 5.2 Principles of Axial and Planar Chirality -- 5.2.1 Elongated Tetrahedron Approach -- 5.2.2 Approach Based on Two-dimensional Chiral Simplex -- 5.3 Stereochemistry of Allenes -- 5.3.1 Optically active allenes -- 5.3.2 Configurational Nomenclature -- 5.4 Stereochemistry of Spiranes and Analogues -- 5.4.1 Optically Active Alkylidene Cycloalkanes (hemispiranes) -- 5.4.2 Optically Active Spiranes -- 5.4.3 Optically Active Adamantoids -- 5.4.4 Optically Active Catenanes -- 5.5 Biphenyl Derivatives and Atropisomerism -- 5.5.1 Optically Active Biphenyl Derivatives -- 5.5.2 Bridged Biphenyls -- 5.5.3 Configurational Nomenclature of Biphenyls -- 5.5.4 Atropisomerism in Compounds other than Biphenyls -- 5.5.5 Atropisomerism Around sp3-sp3 Bond -- 5.6 Stereochemistry of Molecules with Planar Chirality -- 5.6.1 Ansa Compounds -- 5.6.2 Cyclophanes -- 5.6.3 Trans-Cycloalkenes -- 5.7 Helicity -- 5.8 Miscellaneous Examples of Molecular Stereoisomerism -- 5.9 Cyclostereoisomerism -- 5.9.1 Cyclic Directionality of Constitutional Origin -- 5.9.2 Cyclic Directionality of Conformational Origin -- 5.9.3 Retro-enantio Isomers -- 5.10 Summary -- References -- Chapter 6 Topicity and Prostereoisomerism.

6.1 Introduction -- 6.2 Topicity of Ligands and Faces -- 6.2.1 Homotopic Ligands and Faces -- 6.2.2 Enantiotopic Ligands and Faces -- 6.2.3 Diastereotopic Ligands and Faces -- 6.2.4 Summary of Topic Relationships -- 6.3 Nomenclature of Stereoheterotopic Ligands and Faces -- 6.3.1 Symbols for Stereoheterotopic Ligands -- 6.3.2 Symbols for Stereoheterotopic Faces -- 6.4 Stereoheterotopic Ligands and NMR Spectroscopy -- 6.4.1 Diastereotopic Ligands and nmr Spectroscopy -- 6.4.2 Diastereotopic Faces and NMR Spectroscopy -- 6.4.3 Diastereotopic Nuclei in Conformationally Mobile Systems -- 6.4.4 Intrinsic Anisochrony and Conformational Anisochrony -- 6.4.5 Enantiotopic Nuclei and NMR Spectroscopy -- 6.4.6 Isogamous and Anisogamous Nuclei -- 6.5 Prostereoisomerism and Stereoisomerism -- 6.5.1 Chemical Transformations of Heterotopic Ligands and Faces -- 6.5.2 Biochemical Transformations of Heterotopic Ligands and Faces -- 6.6 Summary -- References -- Chapter 7 Racemisation and Methods of Resolution -- 7.1 Introduction -- 7.2 Mechanisms of Racemisation -- 7.2.1 Mechanism Involving Carbanions -- 7.2.2 Mechanism Involving Carbonium Ions -- 7.2.3 Mechanism Involving Free Radicals -- 7.2.4 Mechanism Involving Stable Symmetrical Intermediate -- 7.2.5 Racemisation Through Rotation Around Bonds -- 7.2.6 Configurational Change in Substitution Reactions -- 7.3 Asymmetric Transformation and Mutarotation -- 7.3.1 Mutarotation and First Order Asymmetric Transformation -- 7.3.2 Second Order Asymmetric Transformation -- 7.4 Methods of Resolution -- 7.4.1 Mechanical Separation: Crystallisation Method -- 7.4.2 Resolution Through the Formation of Diastereomers -- 7.4.3 Resolution Through The Formation of Molecular Complexes -- 7.4.4 Resolution by Chromatography -- 7.4.5 Resolution Through Equilibrium Asymmetric Transformation.

7.4.6 Resolution Through Kinetic Asymmetric Transformation -- 7.4.7 Resolution by Biochemical Transformation -- 7.4.8 Resolution Through Inclusion Compounds -- 7.5 Optical Purity and Enantiomeric Excess -- 7.5.1 Isotopic Dilution Method -- 7.5.2 Enzymatic Method -- 7.5.3 Methods Based on Gas Chromatography -- 7.5.4 Methods Based on NMR Spectroscopy -- 7.6 Summary -- References -- Chapter 8 Determination of Configuration -- 8.1 Introduction -- 8.2 Determination of Absolute Configuration -- 8.2.1 Method Based on Anomalous X-ray Scattering -- 8.2.2 Crystals as Probes for the Assignment of Configuration -- 8.3 Correlative Methods for Configurational Assignment -- 8.3.1 Chemical Correlation of Configuration -- 8.3.2 Methods Based on Comparison of Optical Rotation -- 8.3.3 The Method of Quasi-racemate -- 8.3.4 Correlative Method Based on NMR Spectroscopy -- 8.3.5 Correlation Based on Asymmetric Synthesis -- 8.4 Configuration of Molecules with Axial and Planar Chirality -- 8.4.1 Configuration of Biphenyls and Analogues -- 8.4.2 Configuration of Chiral Allenes -- 8.4.3 Configuration of Alkylidenecycloalkanes -- 8.4.4 Configuration of Spiranes -- 8.4.5 Configuration of Trans-cycloalkenes -- 8.5 Relative Configuration of Diastereomers -- 8.5.1 Comparison of Physical Properties -- 8.5.2 Methods Based on NMR Spectroscopy -- 8.5.3 Chemical Methods -- 8.5.4 Symmetry Consideration -- 8.6 Summary -- References -- Chapter 9 Conformations of Acyclic Molecules -- 9.1 Introduction -- 9.2 Molecular Mechanics and Conformation -- 9.2.1 Molecular Deformations and Steric Strain -- 9.2.2 Conformation of Ethane, Propane, and n-butane -- 9.3 Klyne-prelog Terminology for Torsion Angles -- 9.4 Physical Methods for Conformational Analysis -- 9.4.1 Physical and Thermodynamic Properties -- 9.4.2 Spectroscopic Methods -- 9.5 Conformations of a Few Acyclic Molecules.

9.5.1 Conformations of Alkanes -- 9.5.2 Conformations of Halogenoalkanes -- 9.5.3 Conformation and Intramolecular Hydrogen Bonding -- 9.5.4 Conformations of 1-Substituted 3, 3-Dimethylbutanes -- 9.5.5 Conformation Around sp3-sp2 and sp2-sp2 Bonds -- 9.5.6 Conformations Around carbon-heteroatom bonds -- 9.6 Diastereomers: Configurations, and Conformations -- 9.6.1 Diastereomers with two Vicinal Halogens -- 9.6.2 Diastereomers with two Vicinal Hydroxyl Groups -- 9.6.3 Diastereomers with Vicinal Hydroxyl and Amino Groups -- 9.7 Summary -- References -- Chapter 10 Conformations of Cyclic Systems: Monocyclic Compounds -- 10.1 Introduction -- 10.1.1 Early History -- 10.2 Conformations of Cyclohexane -- 10.2.1 Characteristics of the Chair Conformation -- 10.2.2 Ring Inversion -- 10.2.3 Stabilisation of the Flexible Conformers -- 10.3 Conformations of Monosubstituted Cyclohexanes -- 10.3.1 Transition States and Intermediates -- 10.3.2 Conformational Free Energy -- 10.3.3 Isolation and Characterisation of Conformers -- 10.3.4 Determination of Conformational Free Energy -- 10.4 Conformations of Di- and Polysubstituted Cyclohexanes -- 10.4.1 1,1-Disubstituted Cyclohexanes -- 10.4.2 Disubstituted Cyclohexanes -- 10.4.3 A Few Atypical Disubstituted Cyclohexanes -- 10.4.4 Conformation of Polysubstituted Cyclohexanes -- 10.5 Cyclohexane Ring with One and Two Sp2 Carbons -- 10.5.1 Cyclohexanone Ring System -- 10.5.2 Alkylidenecyclohexanes -- 10.5.3 Cyclohexene -- 10.5.4 Cyclohexane-1, 4-dione -- 10.6 Carbocycles Other Than Cyclohexane -- 10.6.1 Cyclobutane -- 10.6.2 Cyclopentane -- 10.6.3 Cycloheptane -- 10.6.4 Medium rings: Conformations -- 10.6.5 Medium Rings : Some Unusual Properties -- 10.6.6 Large Ring Compounds -- 10.6.7 Rings with Multiple Double Bonds -- 10.7 Conformational Analysis of Heterocycles -- 10.7.1 Three-membered Heterocycles.

10.7.2 Four and five-membered Heterocycles.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: