Cover image for Thermal and Statistical Physics.
Thermal and Statistical Physics.
Title:
Thermal and Statistical Physics.
Author:
Singh, R.B.
ISBN:
9781781830468
Personal Author:
Physical Description:
1 online resource (384 pages)
Contents:
Cover -- Preface -- Contents -- Part-1 Thermal Physics -- Chapter 1 Kinetic Theory of Gases -- 1.1 Introduction -- 1.2 Fundamental Assumptions of Kinetic Theory of Ideal Gases -- 1.3 Molecular Flux -- 1.4 Pressure of Gas -- 1.5 Interpretation of Temperature -- 1.6 Deduction of Gas Laws -- 1.7 Avogadro's Law -- 1.8 Dalton's Law -- 1.9 Graham's Law of Diffusion -- 1.10 Maxwell's Law of Distribution of Molecular Speeds -- 1.11 Shape of Curve Representing Speed Distribution Function -- 1.12 Effect of Temperature on Speed Distribution Function -- 1.13 Most Probable Speed, Average Speed And Root Mean Square Speed -- 1.14 Experimental Verification of Maxwell's Distribution Law -- 1.15 Maxwell-Boltzmann Energy Distribution -- 1.16 Degrees of Freedom -- 1.17 Theorem of Equipartition of Energy -- 1.18 Application of Theorem of Equipartition of Energy Specific heat of Gases -- 1.19 Polyatomic Gas -- Solved Examples -- Questions and Problems -- Chapter 2 Transport Phenomena -- 2.1 Mean Free Path -- 2.2 Survival Equation and Mean Free Path -- 2.3 Mean Distance Covered by a Molecule in a Given Direction After Last Collision -- 2.4 Transport Phenomena -- Solved Examples -- Questions and Problems -- Chapter 3 Equation of State for Gases -- 3.1 Introduction -- 3.2 Equation of an Ideal Gas -- 3.3 Behaviour of Real Gases -- 3.4 Andrews Experiment on Carbon Dioxide -- 3.5 Critical State -- 3.6 Two-Phase Region -- 3.7 Intermolecular Forces -- 3.8 Van der Waals Equation of State -- 3.9 Van Der Waals Isotherms -- 3.10 Critical Constants -- 3.11 Alternative Derivation for Critical Constants -- 3.12 Limitations of Van Der Waals Equation -- 3.13 Law of Corresponding States -- 3.14 Determination of Critical Constants -- 3.15 Some Other Equations of State -- 3.16 Virial Equation of States - Kammerlingh Onnes Equation -- 3.17 Boyle Temperature of a Van Der Waals Gas.

Solved Examples -- Questions and Problems -- Chapter 4 Zeroth Law of Thermodynamics: Preliminary Concepts -- 4.1 Introduction -- 4.2 Thermodynamic System and Surroundings -- 4.3 Thermodynamic Variables -- 4.4 Extensive and Intensive Variables -- 4.5 Thermal Equilibrium: Zeroth Law of Thermodynamics -- 4.6 Thermodynamic Equilibrium -- 4.7 Thermodynamic Process -- 4.8 Reversible and Irreversible Processes -- 4.9 Equation of State -- 4.10 Coefficient of Expansion (Expansivity) -- 4.11 Compressibility -- 4.12 Relation Between Partial Derivatives -- Solved Examples -- Questions and Problems -- Chapter 5 First Law of Thermodynamics -- 5.1 Internal Energy -- 5.2 Heat -- 5.3 Work -- 5.4 Work Done in Some Other Processes -- 5.5 Work Depends on Path -- 5.6 Cycle Process -- 5.7 First Law of Thermodynamics -- 5.8 Heat Capacity -- 5.9 Energy Equation and Difference of Heat Capacities -- 5.10 Adiabatic Transformation of an Ideal Gas -- 5.11 Work Done in Reversible Isothermal Expansion of Ideal Gas -- 5.12 Work Done In Reversible Adiabatic Expansion of An Ideal Gas -- 5.13 Work Done In Reversible Expansion of Van Der Waals Gas -- 5.14 Variation of Temperature with Height-Adiabatic Lapse Rate -- 5.15 Total (Exact or Perfect) Differential -- Solved Examples -- Questions and Problems -- Chapter 6 Heat Engines and Second Law of Thermodynamics -- 6.1 Introduction -- 6.2 Heat Engine -- 6.3 Efficiency of Heat Engine -- 6.4 Carnot's Ideal Heat Engine -- 6.5 Reversibility of Carnot Engine -- 6.6 Carnot Refrigerator -- 6.7 Heat Pump -- 6.8 Carnot Theorem -- 6.9 Thermodynamic or Absolute Scale of Temperature -- 6.10 Clausius -Clapeyron Latent Heat Equation (First Latent Heat Equation) -- 6.11 Specific Heat of Saturated Vapour (Second Latent Heat Equation) -- Solved Examples -- Questions and Problems -- Chapter 7 Entropy -- 7.1 Definition -- 7.2 Principle of Entropy Increase.

7.3 Entropy and Unavailable Energy -- 7.4 Change in Entropy in Heat Conduction or in Process of Equalization of Temperature -- 7.5 Calculation of Change in Entropy of a System in Reversible Process -- 7.6 Increase in Entropy in Irreversible Processes -- 7.7 Efficiency of Carnot Cycle From T-S Diagram -- 7.8 Entropy of an Ideal Gas -- 7.9 Statistical Interpretation of Entropy- Entropy and Disorder -- Solved Examples -- Questions and Problems -- Chapter 8 Thermodynamic Relations -- 8.1 Maxwell's Thermodynamic Relations -- 8.2 Tds Equations -- 8.3 Energy Equation -- 8.4 Heat Capacity Equations -- 8.5 Joule-Thomson or Joule-Kelvin Effect -- 8.6 Thermodynamics of Magnetic System Magneto-Caloric Effect -- 8.7 Thermodynamic Functions -- 8.8 Third Law of Thermodynamics Nernst's Heat Theorem -- Solved Examples -- Questions and Problems -- Chapter 9 Production of Low Temperature and Liquefaction of Gases -- 9.1 Introduction -- 9.2 Techniques of Producing Low Temperature -- 9.3 Adiabatic Demagnetization -- 9.4 Liquefaction of Gases -- 9.5 Matter at Very Low Temperature -- 9.6 Superconductivity -- Questions -- Chapter 10 Conduction of Heat -- 10.1 Introduction -- 10.2 Conduction and Conductivity -- 10.3 Variable and Steady State -- 10.4 Isothermal Surface -- 10.5 Coefficient of Thermal Conductivity -- 10.6 Thermal Resistance -- 10.7 Rectilinear Flow of Heat: Fourier Equation -- 10.8 Determination of Absolute Conductivity of a Metal Bar-Forbe's Method -- 10.9 Angstrom's Periodic Flow Method for Determination of Thermal Conductivity -- 10.10 Three Dimensional Flow of Heat -- 10.11 Radial Flow of Heat: Determination of K of Bad Conductor -- 10.12 Radial Flow of Heat in Cylindrical Shell -- 10.13 Determination of Thermal Conductivity of Rubber Given in the Form of Tube -- 10.14 Determination of K of Bad Conductor (Asbestos): Lee and Charlton Method.

10.15 Formation of Ice on the Surface of a Lake -- 10.16 Ingen Hausz Experiment -- Solved Examples -- Questions and Problems -- Chapter 11 Thermal Radiation -- 11.1 Introduction -- 11.2 Sources of Thermal Radiation -- 11.3 Radiation Detector - Thermopile -- 11.4 Nature of Thermal Radiation and Some of Its Properties -- 11.5 Some Fundamental Definitions -- 11.6 Energy Flux, Intensity and Radiant Emittance -- 11.7 Radiation in a Hollow Enclosure -- 11.8 An Ideal (Perfect) Black Body -- 11.9 Fery's Black Body -- 11.10 Wien's Black Body -- 11.11 Kirchhoff's Law -- 11.12 Relation Between Radiant Emittance R of A Surface and Energy Density -- 11.13 Radiation Pressure -- 11.14 Stefan-Boltzmann Law -- 11.15 Solar Constant (S) -- 11.16 Temperature of Sun -- 11.17 Distribution of Energy in Black Body Radiation -- 11.18 Wien's Displacement Law -- 11.19 Normal Modes (Standing Waves) in a Box -- 11.20 Rayleigh-Jeans Law -- 11.21 Planck's Radiation Law -- 11.22 Deduction of Stefan's Law From Planck's Law -- 11.23 Deduction of Wien's Displacement Law -- 11.24 Energy and Momentum of Photon -- Solved Examples -- Questions and Problems -- Part-2 Statistical Physics -- Chapter 1 Preliminary Concepts -- 1.1 Introduction -- 1.2 Maxwell-Boltzmann (M-B) Statistics -- 1.3 Bose-Einstein (B-E) Statistics -- 1.4 Fermi-Dirac (F-D) Statistics -- 1.5 Specification of the State of a System -- 1.6 Density of States -- 1.7 Macroscopic (Macro) State -- 1.8 Microscopic (Micro) State -- Chapter 2 Phase Space -- 2.1 Phase Space -- 2.2 Density of States in Phase Space -- Chapter 3 Ensemble Formulation of Statistical Mechanics -- 3.1 Ensemble -- 3.2 Density of Distribution in y-Space -- 3.3 Principle of Equal a Priori Probability -- 3.4 Ergodic Hypothesis -- 3.5 Liouville's Theorem -- 3.6 Statistical Equilibrium -- 3.7 Ensemble Formulation of Statistical Mechanics.

3.8 Average Energy of Particle -- 3.9 The Equipartition Theorem -- Chapter 4 Thermodynamic Functions -- 4.1 Entropy -- 4.2 Entropy in Terms of Probability -- 4.3 Entropy in Terms of Partition Function -- 4.4 Free Energy -- 4.5 Helmholtz Free Energy in Terms of Partition Function -- 4.6 Thermodynamic Functions in Terms of Partition Function -- Chapter 5 Distribution Laws -- 5.1 Maxwell-Boltzmann Distribution -- 5.2 Heat Capacity of an Ideal Gas -- 5.3 Maxwell's Speed Distribution -- 5.4 Fermi-Dirac Statistics -- 5.5 Bose-Einstein Statistics -- Chapter 6 Applications of Quantum Statistics -- 6.1 Applications of Fermi-Dirac Statistics -- 6.2 Electronic Heat Capacity -- 6.3 Thermionic Emission (Richardson-Dushmann Equation) -- 6.4 Properties of Ideal Bose System -- 6.5 Energy of B-E Gas -- 6.6 Black Body Radiation: Plank's Radiation Law -- 6.7 Comparison of M-B, B-E and F-D Statistics -- 6.8 Validity Criterion for Classical Regime -- Chapter 7 Partition Function -- 7.1 Canonical Partition Function -- 7.2 Classical Partition Function of a System Containing N Distinguishable Particles -- 7.3 Thermodynamic Functions of Monoatomic Gas -- 7.4 Gibbs Paradox -- 7.5 Indistinguishability of Particles and Symmetry of Wave Functions -- 7.6 Partition Function for Indistinguishable Particles -- 7.7 Molecular Partition Function -- 7.8 Partition Function and Thermodynamic Properties of Monoatomic Ideal Gas -- 7.9 Helmholtz Free Energy F -- 7.10 Rotational Partition Function -- 7.11 Vibrational Partition Function -- 7.12 Grand Canonical Ensemble and Grand Partition Function -- 7.13 Statistical Properties of a Thermodynamic System in Terms of Grand Partition Function -- 7.14 Grand Potential -- 7.15 Ideal Gas From Grand Partition Function -- 7.16 Occupation Number of an Energy State From Grand Partition Function: Fermi-Dirac and Bose-Einstein Distribution.

Chapter 8 Applications of Partition Function.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: