Cover image for Progress in Modern Hydrology : Past, Present and Future.
Progress in Modern Hydrology : Past, Present and Future.
Title:
Progress in Modern Hydrology : Past, Present and Future.
Author:
Rodda, John C.
ISBN:
9781119074311
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (430 pages)
Contents:
Cover -- Title Page -- Copyright -- Dedication -- Contents -- List of Contributors -- Chapter Reviewers -- Foreword -- Preface -- Acknowledgements -- Acronyms -- Chapter 1 Introduction -- 1.1 Starting Point -- 1.2 Setting the Scene -- 1.3 Early Days at Wallingford -- 1.4 NERC's Role in Promoting Hydrological Research -- 1.5 Countering Water Problems -- 1.6 The Beginnings of Experimental Hydrology -- 1.7 Fighting Floods -- 1.8 Gaining International Recognition -- 1.9 Governmental Turbulence -- 1.10 An Expanding Role -- 1.11 Extending Hydrological Research into the Eighties -- 1.12 Into the Nineties -- 1.13 Moving into the New Millennium -- 1.14 Looking Ahead -- 1.15 References -- Chapter 2 Basin Studies and Instrumentation -- 2.1 Introduction -- 2.2 Part 1. Basin Studies -- 2.2.1 Starting the Plynlimon study -- 2.2.2 Establishing the Plynlimon field experiment -- 2.2.3 The basins' water balance -- 2.2.4 Finding the mechanism - why forests use more water than grass -- 2.2.5 Process studies -- 2.2.6 The main findings of the Plynlimon research -- 2.2.7 Plynlimon's legacy -- 2.2.8 Other catchment studies -- 2.2.9 Plantation forest cycle in UK -- 2.2.10 Land use change in East Africa -- 2.3 Part 2. Instruments -- 2.3.1 Data logging -- 2.3.2 Precipitation -- 2.3.3 Storage and mechanical gauges -- 2.3.4 Tipping bucket gauges -- 2.3.5 Estimating areal rainfall from a raingauge network -- 2.3.6 Automatic weather stations -- 2.3.7 Potential evaporation (Penman method) -- 2.3.8 River level and discharge -- 2.3.9 Weirs and flumes -- 2.3.10 Flow gauging in steep streams -- 2.3.11 Independent checks and rated sections -- 2.3.12 Soil water measurement -- 2.3.13 The neutron probe -- 2.3.14 The capacitance probe -- 2.3.15 Cosmic ray neutron technique -- 2.3.16 Telemetry -- 2.3 Acknowledgements -- 2.4 References.

Chapter 3 Risks and Extremes -- 3.1 Overview -- 3.2 The UK Flood Studies Report (FSR) -- 3.2.1 Inception of the FSR -- 3.2.2 Publication of the FSR -- 3.2.3 Details of FSR methods and data -- 3.3 Post FSR Developments -- 3.3.1 European and world flood studies -- 3.3.2 Low Flow Studies -- 3.3.3 Further methodological developments -- 3.4 The Flood Estimation Handbook (FEH) -- 3.4.1 Background -- 3.4.2 Objective -- 3.4.3 Structure of the FEH -- 3.4.4 FEH catchment descriptors -- 3.4.5 FEH statistical method -- 3.4.6 The FSR/FEH rainfall-runoff method -- 3.4.7 The FEH model of rainfall depth-duration-frequency -- 3.4.8 The FEH procedures in practice -- 3.5 Post-FEH developments -- 3.5.1 Automation and appraisal of the FEH statistical method -- 3.5.2 Revitalisation of the FSR/FEH rainfall-runoff method -- 3.5.3 Continuous simulation modelling for flood frequency estimation -- 3.5.4 Improvements in data and catchment descriptors -- 3.5.5 Improving the FEH statistical method -- 3.5.6 The new FEH13 rainfall depth-duration-frequency model -- 3.6 Future challenges and opportunities -- 3.6.1 Uncertainty estimation -- 3.6.2 Non-stationarity -- 3.7 Looking to the future: flood protection investment in a highly variable climate -- 3.8 References -- Chapter 4 Terrestrial Hydrological Processes -- 4.1 Introduction -- 4.2 Soil Water Under Different Land Covers -- 4.2.1 Coniferous forest versus grass -- 4.2.2 Broadleaved woodland and grass -- 4.2.3 Tropical rainforest and cleared land -- 4.2.4 Water use of Eucalyptus in India -- 4.2.5 Drip irrigation of sugar cane in Mauritius -- 4.2.6 Soil water databank -- 4.3 Unsaturated Zone Water Balances -- 4.3.1 Thetford Forest -- 4.3.2 Soil hydrology of the English Chalk: Fleam Dyke -- 4.3.3 Bridgets Farm -- 4.3.4 West Ilsley and Warren Farm.

4.3.5 Shallow unsaturated zone behaviour of Chalk in southern England -- 4.3.6 Other water balance studies -- 4.4 Role of Macropores -- 4.4.1 A first attempt at a model of water flow in macropores -- 4.4.2 Pesticide movement through macropores in clay soils -- 4.4.3 Natural pipes, a runoff process on upland catchments -- 4.4.4 Artificial drainage -- 4.5 Hillslope-Streamflow Linkages -- 4.5.1 Betwa Project, India -- 4.5.2 Hillslope hydrology - Amazon -- 4.5.3 Hydrology of small catchments - Amazon -- 4.5.4 Bedrock groundwater controls on runoff generation -- 4.6 Looking to the Future -- 4.6.1 Real-time soil water monitoring -- 4.6.2 Macropores and water flow in soils - where to from here? -- 4.6.3 Role of soils in land management - catchment flooding -- 4.7 End Piece -- 4.8 References -- Chapter 5 The Physics of Atmospheric Interaction -- 5.1 Introduction -- 5.2 Creating New Measurement Methods and Understanding -- 5.2.1 The early years -- 5.2.2 Establishing the Thetford project -- 5.2.3 Results from Thetford -- 5.2.4 Expanding studies -- 5.3 Regional and Global Hydrometeorology Studies -- 5.3.1 The Amazon -- 5.3.2 Further international experiments -- 5.3.3 African studies begin at ICRISAT -- 5.3.4 Campaigns across continents -- 5.3.5 Field experiment in desertification-threatened areas -- 5.3.6 Niger again -- 5.3.7 Extending international collaboration -- 5.4 Eco-Hydrology Studies -- 5.5 Arctic Studies -- 5.5.1 Land arctic physical processes -- 5.5.2 Responding to diverse demands -- 5.5.3 Further research moves -- 5.5.4 African monsoon multidisciplinary analysis -- 5.5.5 International polar year -- 5.5.6 Moving on -- 5.6 Reflections on Contributions to Research -- 5.6 Acknowledgments -- 5.7 References -- Chapter 6 Water Resources Security -- 6.1 Introduction -- 6.2 Low Flow Studies 1974-1987 -- 6.2.1 Introduction.

6.2.2 Low flow analysis -- 6.2.3 Regionalisation -- 6.2.4 Water industry implementation -- 6.3 Low Flow Studies 1988-2000: Capitalizing on Digital Cartography -- 6.3.1 Early applications -- 6.3.2 Micro low flows -- 6.3.3 Artificial influences -- 6.3.4 Instream ecology -- 6.4 Low Flows 2000 to 2015: Delivering UK and EU Policy Requirements -- 6.4.1 Introduction -- 6.4.2 Estimation of FDCs using a region-of-influence model -- 6.4.3 The LowFlows software system -- 6.4.4 Low flow estimation: from FDCs to time series -- 6.5 International Co-operation in Low Flow Studies -- 6.5.1 FRIEND: Flow Regimes from International Experimental and Network Data -- 6.5.2 HKH FRIEND: small-scale hydropower -- 6.5.3 HKH FRIEND: deglaciation -- 6.5.4 Southern Africa FRIEND: drought research -- 6.6 Applied Overseas Studies -- 6.6.1 Water resource studies in Botswana -- 6.6.2 The hydrology of lake Victoria -- 6.6.3 Water resource studies in Somalia -- 6.6.4 Recharge in areas of tiger bush vegetation, Niger -- 6.6.5 Other overseas studies -- 6.6.6 Evolution of water resource studies -- 6.6 Studies in the Indian subcontinent -- 6.6 Studies in Southeast Asia -- 6.7 Conclusions -- 6.8 References -- Chapter 7 Hydrological Modelling -- 7.1 Introduction -- 7.1.1 Hydrological modelling at Wallingford -- 7.2 Different Types of Models -- 7.2.1 Metric models -- 7.2.2 Conceptual models -- 7.2.3 Physics-based models -- 7.3 Uncertainty in Modelling -- 7.4 Discussion and Conclusions -- 7.5 References -- Chapter 8 Water Quality -- 8.1 Background -- 8.2 The Chemistry of the Uplands -- 8.3 Plynlimon -- 8.3.1 Background water quality patterns (not influenced by felling) -- 8.3.2 Forest harvesting impacts on water quality -- 8.3.3 Hydrological implications to the hydrochemical studies.

8.3.4 High-resolution monitoring: The road to fractal functioning -- 8.4 Lowland River Water Quality -- 8.4.1 General overview -- 8.5 Nutrients: Nitrogen and Phosphorus -- 8.5.1 Linking nutrients and ecological status of rivers -- 8.6 Steroid Oestrogens -- 8.7 Pesticides -- 8.7.1 Surface waters -- 8.7.2 Groundwater -- 8.8 Water quality modelling -- 8.9 Future Challenges and Opportunities -- 8.10 References -- Chapter 9 Ecohydrology -- 9.1 Introduction -- 9.2 Water Requirements of River Ecosystems -- 9.2.1 Introduction -- 9.2.2 Physical habitat modelling -- 9.2.3 Environmental Flows -- 9.2.4 Linking river ecosystems and the flow regime -- 9.3 Wetlands -- 9.3.1 Introduction -- 9.3.2 Hydrological services of wetlands -- 9.3.3 Water requirements of wetlands -- 9.3.4 Restoration -- 9.3.5 Climate Change Impacts -- 9.4 Lakes -- 9.4.1 Flushing rate and water retention time -- 9.4.2 Water level -- 9.4.3 Stratification -- 9.4.4 Wind-induced disturbance -- 9.4.5 Currents, waves and sediment biogeochemical processes -- 9.5 References -- Chapter 10 Climate Change and Hydrology -- 10.1 Introduction to Climate Change: Changes in Twentieth Century and Expected Impact of Increasing GHG on Global Water Cycle -- 10.2 Introduction to GCMs: From 1970s Onwards -- 10.3 The Development of Land Surface Models Within Climate Models: Short History -- 10.4 Targets for Benchmarking -- 10.5 Studies in Land/Atmosphere Interaction -- 10.6 Impacts of Climate Change on River Flows and Water Resources -- 10.6.1 Introduction -- 10.6.2 The development of impacts research -- 10.6.3 Key issues in estimating impacts on hydrological behaviour -- 10.6.4 Climate change and global water resources -- 10.7 Conclusion -- 10.8 References -- Chapter 11 Hydrological Data Acquisition and Exploitation -- 11.1 Introduction -- 11.2 The Need for Water Data.

11.3 Evolution of the UK Hydrometric Network.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: