Cover image for Electrochromic Materials and Devices.
Electrochromic Materials and Devices.
Title:
Electrochromic Materials and Devices.
Author:
Mortimer, Roger J.
ISBN:
9783527679874
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (669 pages)
Contents:
Cover -- Title Page -- Copyright -- Dedication -- Contents -- Preface -- Acknowledgements -- List of Contributors -- Part I Electrochromic Materials and Processing -- Chapter 1 Electrochromic Metal Oxides: An Introduction to Materials and Devices -- 1.1 Introduction -- 1.2 Some Notes on History and Early Applications -- 1.3 Overview of Electrochromic Oxides -- 1.3.1 Recent Work on Electrochromic Oxide Thin Films -- 1.3.2 Optical and Electronic Effects -- 1.3.3 Charge Transfer Absorption in Tungsten Oxide -- 1.3.4 Ionic Effects -- 1.3.5 On the Importance of Thin-Film Deposition Parameters -- 1.3.6 Electrochromism in Films of Mixed Oxide: The W-Ni-Oxide System -- 1.4 Transparent Electrical Conductors and Electrolytes -- 1.4.1 Transparent Electrical Conductors: Oxide Films -- 1.4.2 Transparent Electrical Conductors: Metal-Based Films -- 1.4.3 Transparent Electrical Conductors: Nanowire-Based Coatings and Other Alternatives -- 1.4.4 Electrolytes: Some Examples -- 1.5 Towards Devices -- 1.5.1 Six Hurdles for Device Manufacturing -- 1.5.2 Practical Constructions of Electrochromic Devices -- 1.6 Conclusions -- Acknowledgement -- References -- Chapter 2 Electrochromic Materials Based on Prussian Blue and Other Metal Metallohexacyanates -- 2.1 The Electrochromism of Prussian Blue -- 2.1.1 Introduction -- 2.1.2 Electrodeposited PB Film and Comparisons with Bulk PB -- 2.1.3 PB Prepared from Direct Cell Reaction, with No Applied Potential -- 2.1.4 Layer-by-Layer Deposition of PB -- 2.1.5 PB on Graphene -- 2.1.6 Alternative Preparations of PB: PB from Colloid and Similar Origins -- 2.1.7 Alternative Electrolytes Including Polymeric for PB Electrochromism -- 2.2 Metal Metallohexacyanates akin to Prussian Blue -- 2.2.1 Ruthenium Purple RP -- 2.2.2 Vanadium Hexacyanoferrate -- 2.2.3 Nickel Hexacyanoferrate -- 2.3 Copper Hexacyanoferrate.

2.3.1 Palladium Hexacyanoferrate -- 2.3.2 Indium Hexacyanoferrate and Gallium Hexacyanoferrate -- 2.3.3 Miscellaneous PB Analogues as Hexacyanoferrates -- 2.3.4 Mixed-Metal and Mixed-Ligand PB Analogues Listed -- References -- Chapter 3 Electrochromic Materials and Devices Based on Viologens -- 3.1 Introduction, Naming and Previous Studies -- 3.2 Redox Chemistry of Bipyridilium Electrochromes -- 3.3 Physicochemical Considerations for Including Bipyridilium Species in ECDs -- 3.3.1 Type-1 Viologen Electrochromes -- 3.3.2 Type-2 Viologen Electrochromes -- 3.3.2.1 The Effect of the Bipyridilium-N Substituent -- 3.3.2.2 The Effect of Micellar Viologen Species -- 3.3.2.3 The Effect of Film Morphology -- 3.3.2.4 The Effect of the Counter Anion -- 3.3.2.5 The Use of Electron Mediators and the Formation of Electro-Inactive Oils -- 3.3.2.6 The Effect of Dimerised Radical Cations -- 3.3.3 Type-3 Viologen Electrochromes -- 3.3.3.1 Immobilising Viologen Electrochromes -- 3.3.3.2 Derivatised Electrodes -- 3.4 Exemplar Bipyridilium ECDs -- 3.4.1 The Philips Device -- 3.4.2 The ICI Device -- 3.4.3 The IBM Device -- 3.4.4 The Gentex Device -- 3.4.5 The NTERA Device -- 3.4.6 The NanoChromics Cell -- 3.4.7 The Grätzel Device -- 3.5 Elaborations -- 3.5.1 The Use of Pulsed Potentials -- 3.5.2 Electropolychromism -- 3.5.3 Viologen Electrochemiluminescence -- 3.5.4 Viologens Incorporated within Paper -- References -- Chapter 4 Electrochromic Devices Based on Metal Hexacyanometallate/Viologen Pairings -- 4.1 Introduction -- 4.1.1 Overview of Prussian Blue and Viologen Electrochromic Devices -- 4.2 Hybrid (Solid-with-Solution) Electrochromic Devices -- 4.2.1 Prussian Blue and Heptyl Viologen Solid-with-Solution-Type ECD -- 4.2.1.1 Preparation and Characterisation of PB Thin Film and HV(BF4)2.

4.2.1.2 Redox Behaviours and Visible Spectra of the PB Film and HV(BF4)2 Solution -- 4.2.1.3 Operating Parameters and Properties of PHECD -- 4.2.1.4 Analogous Devices -- 4.2.2 PB Thin Film and Viologen in Ionic Liquid-Based ECD -- 4.3 All-Solid Electrochromic Devices -- 4.3.1 Prussian Blue and Poly(butyl viologen) Thin-Film ECD -- 4.3.1.1 Preparation of Poly(butyl viologen) Thin Film -- 4.3.1.2 Electrochemical and Optical Properties of Poly(butyl viologen) Thin Films -- 4.3.1.3 Electrochromic Performance of PBV-PB ECD -- 4.3.2 Prussian Blue and Viologen Anchored TiO2-Based ECD -- 4.3.3 Polypyrrole-Prussian Blue Composite Film and Benzylviologen Polymer-Based Thin-Film-Type ECD -- 4.3.3.1 Preparation of PP-PB Thin-Film -- 4.3.3.2 Performance of the PP-PB Thin-Film and pBPQ-Based Electrochromic Device -- 4.3.4 PB Thin-Film and Viologen-Doped Poly(3,4-ethylenedioxythiopene) Polymer-Based ECD -- 4.3.5 Other Solid-State Viologens -- 4.4 Other Metal Hexacyanometallate-Viologen-Based ECDs -- 4.5 Prospects for Metal Hexacyanometallate-Viologen-Based ECDs -- References -- Chapter 5 Conjugated Electrochromic Polymers: Structure-Driven Colour and Processing Control -- 5.1 Introduction and Background -- 5.1.1 Source of Electrochromism in Conjugated Polymers -- 5.1.1.1 Common Polyheterocycles -- 5.1.1.2 Donor-Acceptor Approach - The Push-Pull of Electrons -- 5.1.1.3 Steric Interactions -- 5.1.1.4 Fused Aromatics -- 5.2 Representative Systems -- 5.2.1 Coloured-to-Transmissive Polymers -- 5.2.1.1 Yellow -- 5.2.1.2 Orange and Red -- 5.2.1.3 Blue and Purple -- 5.2.1.4 Cyan/Green -- 5.2.1.5 Black -- 5.2.2 Anodically Colouring -- 5.2.3 Inducing Multicoloured States in ECPs -- 5.2.3.1 Polyaniline: A Model ECP with Multiple Redox States -- 5.2.3.2 Colour Control via Copolymerisation -- 5.2.3.3 Appended Electrochromes on ECPs -- 5.2.3.4 Surface-Confined Polymerisation.

5.2.3.5 Combining Redox States - Oxidation and Reduction in a Single Material -- 5.2.3.6 Composite Formation with Electrochrome Dopants -- 5.3 Processability of Electrochromic Polymers -- 5.3.1 Electrochemical Polymerisation -- 5.3.2 Functionalisation of ECPs for Achieving Organic Solubility -- 5.3.3 Aqueous Processability and Compatibility -- 5.3.3.1 Use of Charged Polymers -- 5.3.3.2 Ion Functionalised Polymers -- 5.3.3.3 Organic Processing to Achieve Water Solubility and Water Switchability -- 5.3.4 Methods for Patterning -- 5.4 Summary and Perspective -- Acknowledgements -- References -- Chapter 6 Electrochromism within Transition-Metal Coordination Complexes and Polymers -- 6.1 Electronic Transitions and Redox Properties of Transition-Metal Complexes -- 6.2 Electrochromism in Reductively Electropolymerised Films of Polypyridyl Complexes -- 6.3 Electrochromism in Oxidatively Electropolymerised Films of Transition-Metal Complexes -- 6.4 Electrochromism in Self-Assembled or Self-Adsorbed Multilayer Films of Transition-Metal Complexes -- 6.5 Electrochromism in Spin-Coated or Drop-Cast Thin Films of Transition-Metal Complexes -- 6.6 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 7 Organic Near-Infrared Electrochromic Materials -- 7.1 Introduction -- 7.2 Aromatic Quinones -- 7.3 Aromatic Imides -- 7.4 Anthraquinone Imides -- 7.5 Poly(triarylamine)s -- 7.6 Conjugated Polymers -- 7.7 Other NIR Electrochromic Materials -- 7.8 Conclusion -- References -- Chapter 8 Metal Hydrides for Smart-Window Applications -- 8.1 Switchable-Mirror Thin Films -- 8.2 Optical Switching Property -- 8.3 Switching Durability -- 8.4 Colour in the Transparent State -- 8.5 Electrochromic Switchable Mirror -- 8.6 Smart-Window Application -- References -- Part II Nanostructured Electrochromic Materials and Device Fabrication.

Chapter 9 Nanostructures in Electrochromic Materials -- 9.1 Introduction -- 9.1.1 Why Nanostructures? -- 9.1.2 Classification of Nanostructural Electrochromic Materials -- 9.1.3 Preparation Method -- 9.2 Nanostructures of Transition Metal Oxides (TMOs) -- 9.2.1 Introduction -- 9.2.2 Single TMO Systems -- 9.2.3 Binary TMO Systems -- 9.3 Nanostructures of Conjugated Polymers -- 9.3.1 Introduction -- 9.3.2 Polythiophene and Its Derivatives -- 9.3.3 Polyaniline -- 9.3.4 Polypyrrole -- 9.4 Nanostructures of Organic-Metal Complexes and Viologen -- 9.4.1 Introduction -- 9.4.2 Organic-Metal Complexes -- 9.4.3 Viologens -- 9.5 Electrochromic Nanocomposites and Nanohybrids -- 9.5.1 Introduction -- 9.5.2 Nanocomposites of Electrochromic Materials -- 9.5.2.1 Conjugated Polymer/TMO and TMO/TMO Nanocomposites -- 9.5.2.2 Conjugated Polymer/Organic Small-Molecule Nanocomposites -- 9.5.3 Nanocomposites of Electrochromic/Non-Electrochromic Active Materials -- 9.5.3.1 Conjugated Polymers as Electrochromic Materials -- 9.5.3.2 TMOs as Electrochromic Materials -- 9.5.3.3 Organic Small Molecules as Electrochromic Materials -- 9.5.3.4 Electrochromic Nanohybrids with Covalent Bonds -- 9.6 Conclusions and Perspective -- References -- Chapter 10 Advances in Polymer Electrolytes for Electrochromic Applications -- 10.1 Introduction -- 10.2 Requirements of Polymer Electrolytes in Electrochromic Applications -- 10.3 Types of Polymer Electrolytes -- 10.3.1 Solid Polymer Electrolytes (SPEs) -- 10.3.2 Gel Polymer Electrolytes (GPEs) -- 10.3.3 Polyelectrolytes -- 10.3.4 Composite Polymer Electrolytes (CPEs) -- 10.4 Polymer Hosts of Interest in Electrochromic Devices -- 10.4.1 PEO/PEG-Based Polymer Electrolytes -- 10.4.2 PMMA-Based Polymer Electrolytes -- 10.4.3 PVDF-Based Polymer Electrolytes -- 10.4.4 Ionic Liquid-Based Polymer Electrolytes.

10.4.5 Poly(propylene carbonate) (PPC)-Based Polymer Electrolytes.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: