Cover image for Handbook of Measurement in Science and Engineering.
Handbook of Measurement in Science and Engineering.
Title:
Handbook of Measurement in Science and Engineering.
Author:
Kutz, Myer.
ISBN:
9781118446973
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (1037 pages)
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Contributors -- PART I CIVIL AND ENVIRONMENTAL ENGINEERING -- 1 New and Emerging Technologies in Structural Health Monitoring -- 1.1 Introduction -- 1.2 Background -- 1.3 New and Emerging Technologies -- 1.3.1 General -- 1.3.2 Fiber-Optic Sensors (FOS) -- 1.3.3 The Global Positioning System (GPS) -- 1.3.4 Microelectromechanical Systems (MEMS) -- 1.3.5 Corrosion Monitoring -- 1.3.6 B-WIM, WIM -- 1.3.7 Nondestructive Testing (NDT) -- 1.3.8 Interferometric Radar -- 1.3.9 Photogrammetry -- 1.3.10 Smart Technical Textiles -- 1.3.11 Specific Issues Around Usage of New Technologies -- 1.3.12 Chosen Technologies and Motivation -- 1.4 Fiber-Optic Technology -- 1.4.1 General -- 1.4.2 Sensors Based on Sagnac, Michelson, and Mach-Zehnder Interferometers -- 1.4.3 Sensor Based on the Fiber Bragg Gratings -- 1.4.4 Sensors Based on Fabry-Perot Interferometry -- 1.4.5 Best Performances of Discrete FOS -- 1.4.6 Distributed Sensors -- 1.5 Acoustic Emission -- 1.5.1 Theory of Acoustic Emission -- 1.5.2 Sources of Acoustic Emission -- 1.5.3 The Development of Acoustic Emission in Industry and Civil Engineering -- 1.5.4 Acoustic Emission Systems -- 1.5.5 Codes, Standards, and Recommended Practice in Acoustic Emission -- 1.6 Radar Technology -- 1.6.1 General -- 1.6.2 Ground-Penetrating Radar -- 1.6.3 Interferometric Radar -- 1.7 Global Positioning System -- 1.8 Corrosion Monitoring Systems -- 1.9 Weigh-in-Motion (WIM) Systems -- 1.9.1 Weigh-in-Motion -- 1.9.2 Railway Weigh-in-Motion -- 1.9.3 Bridge Weigh-in-Motion -- 1.10 Components of Structural Health Monitoring System -- 1.10.1 Sensory System -- 1.10.2 Data Acquisition System -- 1.10.3 Data Processing and Control System -- 1.10.4 User Interface -- 1.10.5 Maintenance Tools -- 1.11 Structural Health Monitoring System Design.

1.11.1 Structural Analysis for New Structure -- 1.11.2 Structural Analysis for Existing Structure -- 1.11.3 Sensor Selection -- 1.11.4 Data Acquisition Issues -- 1.11.5 Responsibilities and Installation Planning -- 1.12 System Procurement and Installation -- 1.12.1 System Procurement -- 1.12.2 Commissioning -- 1.12.3 Installation -- 1.12.4 Lifetime Support -- 1.12.5 System Efficiency and Redundancy -- 1.12.6 Dismantling Environmental Issues -- 1.13 Application of Structural Health Monitoring Systems -- 1.13.1 High-Rise Building, Singapore-2001 -- 1.13.2 The New Arsta Railway Bridge, Sweden-2005 -- 1.13.3 Stonecutters Bridge, Hong Kong-2010 -- 1.13.4 Severn River Crossing, UK-2010 -- 1.13.5 A4 Hammersmith Flyover, UK-2010 -- 1.13.6 Streicker Bridge, United States-2010 -- 1.13.7 Messina Bridge, Italy-2018 -- 1.14 Discussion -- 1.14.1 Development of New and Emerging Technologies -- 1.14.2 Obstacles -- 1.14.3 Need for Education and Collaboration -- 1.14.4 Future Use and Development -- 1.15 Conclusion -- Acknowledgments -- References -- 2 Applications of GIS in Engineering Measurements -- 2.1 Introduction -- 2.2 Background -- 2.2.1 Measurement-Based GIS -- 2.3 Basic Principles of GIS -- 2.3.1 GIS Data -- 2.3.2 Spatial Modeling -- 2.4 Measurement-Based GIS Applications -- 2.5 Implementation Issues -- 2.5.1 Data -- 2.5.2 Technology -- 2.5.3 Organizations and People -- 2.6 Conclusion -- 2.6.1 Metadata -- 2.6.2 Data Visualization -- 2.6.3 Enterprise GIS/Asset Management -- References -- 3 Traffic Congestion Management -- 3.1 Introduction and Background -- 3.2 Scope of the Chapter -- 3.3 Organization of the Chapter -- 3.4 Fundamentals of Vehicle Emission Estimation -- 3.4.1 VMT -- 3.4.2 VMT-S -- 3.4.3 Mode -- 3.4.4 VSP -- 3.4.5 Hybrid VSP-S -- 3.5 Inventory of Traffic Congestion Management Methods -- 3.5.1 Travel Demand Management (TDM).

3.5.2 Traffic Operational Strategies (TOS) -- 3.6 Assessing Emission Impacts of Traffic Congestion Management -- 3.6.1 Direct Measurement Methods -- 3.6.2 Mobile Emission Estimation Models -- 3.6.3 Transportation Models -- 3.7 Summary -- Acknowledgments -- References -- 4 Seismic Testing of Highway Bridges -- 4.1 Introduction -- 4.2 Similitude Requirements -- 4.2.1 Dimensional Analysis -- 4.2.2 Seismic Modeling -- 4.2.3 Example -- 4.3 Specimen Fabrication -- 4.3.1 Substructure -- 4.3.2 Superstructure -- 4.4 Input Motion -- 4.5 Instrumentation -- 4.5.1 Strain Measurement -- 4.5.2 Displacement Measurement -- 4.5.3 Force Measurement -- 4.5.4 Acceleration Measurement -- 4.6 Data Acquisition and Processing -- 4.7 Results -- References -- 5 Measurements in Environmental Engineering -- 5.1 Introduction -- 5.1.1 Data Quality Objectives -- 5.1.2 Monitoring Plan Example -- 5.1.3 Selection of a Monitoring Site -- 5.2 Environmental Sampling Approaches -- 5.3 Laboratory Analysis -- 5.3.1 Extraction -- 5.3.2 Chromatography -- 5.3.3 Limits of Detection -- 5.3.4 Aerosol Limits of Detection -- 5.3.5 Microbial Limits of Detection -- 5.4 Measurement Uncertainty -- 5.5 Measurement Decision Making -- 5.6 Environmental Indicators -- 5.6.1 Oxygen Indicators -- 5.6.2 Indices -- 5.7 Extending Measurement Data Using Models -- 5.8 Summary -- Nomenclature -- References -- 6 Hydrology Measurements -- 6.1 Introduction -- 6.1.1 Stage -- 6.1.2 Velocity -- 6.1.3 Water Budget -- 6.1.4 Residence Time -- 6.2 Precipitation -- 6.2.1 Rain Gauges -- 6.2.2 Snow Accumulation -- 6.2.3 Remote Sensing -- 6.3 Evapotranspiration -- 6.3.1 Pan Evaporation -- 6.3.2 Watershed Studies -- 6.3.3 Weighing Lysimeters -- 6.3.4 Enclosures -- 6.3.5 Eddy Covariance -- 6.3.6 Indirect Approaches -- 6.3.7 Remote Sensing -- 6.4 Surface Flow -- 6.4.1 Topographic and Bathymetric Maps -- 6.4.2 Control Structures.

6.4.3 Rating Curves -- 6.5 Groundwater -- 6.5.1 Types of Aquifers -- 6.5.2 Hydraulic Properties -- 6.5.3 Flow and Transport -- 6.6 Soil Water -- 6.6.1 Infiltration -- 6.6.2 Percolation -- 6.6.3 Hydraulic Properties -- 6.7 Water Quality -- 6.7.1 Physical -- 6.7.2 Chemical -- 6.7.3 Biological -- Suggested Readings -- 7 Mobile Source Emissions Testing -- 7.1 Testing for Regulatory Compliance -- 7.1.1 The Federal Test Procedure -- 7.1.2 Testing for Inspection and Maintenance -- 7.1.3 Emission Testing with On-Board Portable Emissions Monitoring Systems -- 7.1.4 Testing for Special Purpose Emissions Studies -- References -- PART II MECHANICAL AND BIOMEDICAL ENGINEERING -- 8 Dimensions, Surfaces, and their Measurement -- 8.1 Dimensions, Tolerances, and Related Attributes -- 8.1.1 Dimensions and Tolerances -- 8.1.2 Other Geometric Attributes -- 8.2 Conventional Measuring Instruments and Gages -- 8.2.1 Precision Gage Blocks -- 8.2.2 Measuring Instruments for Linear Dimensions -- 8.2.3 Comparative Instruments -- 8.2.4 Fixed Gages -- 8.2.5 Angular Measurements -- 8.3 Surfaces -- 8.3.1 Characteristics of Surfaces -- References -- 9 Mass Properties Measurement -- 9.1 Introduction -- 9.1.1 Scope -- 9.1.2 Other Resources -- 9.1.3 Terms -- 9.2 Mass and Weight -- 9.2.1 Measurement Systems -- 9.3 Measurement Methodology -- 9.3.1 Steps in Making a Mass Properties Measurement -- 9.3.2 Data and Frames of Reference -- 9.3.3 Choosing a Mass Properties Instrument -- 9.3.4 Fixtures -- 9.4 Weight and Mass Measurement -- 9.4.1 Types of Scales -- 9.5 Center of Gravity Measurement -- 9.5.1 Repositioning Methods of CG Measurement -- 9.5.2 Multiple-Point Weighing Method -- 9.5.3 CG by MOI Method -- 9.5.4 Spin Balance Method -- 9.6 MOI Measurement -- 9.6.1 Hanging Wire Torsion Pendulum -- 9.6.2 Bifilar Suspension -- 9.6.3 Inverted Torsion Pendulum.

9.6.4 Combined CG and MOI Measurement -- 9.7 POI Measurement -- 9.7.1 MOI Method of Measuring POI -- 9.7.2 Spin Balance Method -- 9.8 Measuring Large Vehicles -- 9.8.1 General Process -- 9.8.2 Weighing Ships -- 9.8.3 Weighing Aircraft -- 9.9 Sources of Uncertainty -- 9.9.1 Weight Uncertainties -- 9.9.2 Factors Affecting Weight Measurement -- 9.9.3 Sources of MOI Uncertainty -- References -- 10 Force Measurement -- 10.1 Introduction -- 10.2 Force Transducers -- 10.3 Universal Testing Machines -- 10.4 The Strain Gauge Sensor -- 10.4.1 Strain Gauge Circuit Compensation -- 10.5 Resonant Element Transducers -- 10.6 Surface Acoustic Wave Transducers -- 10.7 Dynamometers -- 10.8 Optical Force Transducers -- 10.9 Magneto-Elastic Transducers -- 10.10 Force Balance Transducers -- 10.11 Force Transducer Characteristics -- 10.11.1 Capacity -- 10.11.2 Output -- 10.11.3 Repeatability -- 10.11.4 Creep -- 10.11.5 Temperature Coefficient -- 10.11.6 Accuracy -- 10.12 Calibration -- 10.12.1 Uncertainty -- 10.13 Conclusion -- Glossary of Terms -- References -- 11 Resistive Strain Measurement Devices -- 11.1 Preliminary Discussion -- 11.1.1 Scope -- 11.1.2 Definition of Strain -- 11.1.3 Practical Implications -- 11.2 Resistance Metal Strain Gages -- 11.2.1 General Description -- 11.2.2 Strain Sensitivity -- 11.2.3 Strain Gage Alloys and Calibration Parameters -- 11.2.4 Strain Gage Rosettes -- 11.2.5 The Wheatstone Bridge -- 11.3 Semiconductor Strain Gages -- 11.4 Liquid Metal Strain Gages -- References -- 12 Vibration Measurement -- 12.1 Introduction -- 12.2 One-Degree-of-Freedom System Response -- 12.2.1 Free Vibration Response-Time Domain -- 12.2.2 Time Harmonic Excitation-Frequency Domain -- 12.3 Multi-Degree-of-Freedom Systems and the Frequency Response Function -- 12.3.1 Free Vibration Response-Time Domain -- 12.3.2 Frequency Domain Response.

12.3.3 The Frequency Response Function and Discrete Fourier Transforms.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: