Cover image for Electronic Structure Calculations on Graphics Processing Units : From Quantum Chemistry to Condensed Matter Physics.
Electronic Structure Calculations on Graphics Processing Units : From Quantum Chemistry to Condensed Matter Physics.
Title:
Electronic Structure Calculations on Graphics Processing Units : From Quantum Chemistry to Condensed Matter Physics.
Author:
Walker, Ross C.
ISBN:
9781118670699
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (448 pages)
Contents:
Title Page -- Copyright -- Table of Contents -- List of Contributors -- Preface -- Acknowledgments -- Glossary -- Abbreviations - Scientific -- Abbreviations - Technical -- Chapter 1: Why Graphics Processing Units -- 1.1 A Historical Perspective of Parallel Computing -- 1.2 The Rise of the GPU -- 1.3 Parallel Computing on Central Processing Units -- 1.4 Parallel Computing on Graphics Processing Units -- 1.5 GPU-Accelerated Applications -- References -- Chapter 2: GPUs: Hardware to Software -- 2.1 Basic GPU Terminology -- 2.2 Architecture of GPUs -- 2.3 CUDA Programming Model -- 2.4 Programming and Optimization Concepts -- 2.5 Software Libraries for GPUs -- 2.6 Special Features of CUDA-Enabled GPUs -- References -- Chapter 3: Overview of Electronic Structure Methods -- 3.1 Introduction -- 3.2 Hartree-Fock Theory -- 3.3 Density Functional Theory -- 3.4 Basis Sets -- 3.5 Semiempirical Methods -- 3.6 Density Functional Tight Binding -- 3.7 Wave Function-Based Electron Correlation Methods -- Acknowledgments -- References -- Chapter 4: Gaussian Basis Set Hartree-Fock, Density Functional Theory, and Beyond on GPUs -- 4.1 Quantum Chemistry Review -- 4.2 Hardware and CUDA Overview -- 4.3 GPU ERI Evaluation -- 4.4 Integral-Direct Fock Construction on GPUs -- 4.5 Precision Considerations -- 4.6 Post-SCF Methods -- 4.7 Example Calculations -- 4.8 Conclusions and Outlook -- References -- Chapter 5: GPU Acceleration for Density Functional Theory with Slater-Type Orbitals -- 5.1 Background -- 5.2 Theory and CPU Implementation -- 5.3 GPU Implementation -- 5.4 Conclusion -- References -- Chapter 6: Wavelet-Based Density Functional Theory on Massively Parallel Hybrid Architectures -- 6.1 Introductory Remarks on Wavelet Basis Sets for Density Functional Theory Implementations -- 6.2 Operators in Wavelet Basis Sets -- 6.3 Parallelization -- 6.4 GPU Architecture.

6.5 Conclusions and Outlook -- References -- Chapter 7: Plane-Wave Density Functional Theory -- 7.1 Introduction -- 7.2 Theoretical Background -- 7.3 Implementation -- 7.4 Optimizations -- 7.5 Performance Examples -- 7.6 Exact Exchange with Plane Waves -- 7.7 Summary and Outlook -- 7.8 Acknowledgments -- References -- Appendix A: Definitions and Conventions -- Appendix B: Example Kernels -- Chapter 8: GPU-Accelerated Sparse Matrix-Matrix Multiplication for Linear Scaling Density Functional Theory -- 8.1 Introduction -- 8.2 Software Architecture for GPU-Acceleration -- 8.3 Maximizing Asynchronous Progress -- 8.4 Libcusmm: GPU Accelerated Small Matrix Multiplications -- 8.5 Benchmarks and Conclusions -- Acknowledgments -- References -- Chapter 9: Grid-Based Projector-Augmented Wave Method -- 9.1 Introduction -- 9.2 General Overview -- 9.3 Using GPUs in Ground-State Calculations -- 9.4 Time-Dependent Density Functional Theory -- 9.5 Random Phase Approximation for the Correlation Energy -- 9.6 Summary and Outlook -- Acknowledgments -- References -- Chapter 10: Application of Graphics Processing Units to Accelerate Real-Space Density Functional Theory and Time-Dependent Density Functional Theory Calculations -- 10.1 Introduction -- 10.2 The Real-Space Representation -- 10.3 Numerical Aspects of the Real-Space Approach -- 10.4 General GPU Optimization Strategy -- 10.5 Kohn-Sham Hamiltonian -- 10.6 Orthogonalization and Subspace Diagonalization -- 10.7 Exponentiation -- 10.8 The Hartree Potential -- 10.9 Other Operations -- 10.10 Numerical Performance -- 10.11 Conclusions -- 10.12 Computational Methods -- Acknowledgments -- References -- Chapter 11: Semiempirical Quantum Chemistry -- 11.1 Introduction -- 11.2 Overview of Semiempirical Methods -- 11.3 Computational Bottlenecks -- 11.4 Profile-Guided Optimization for the Hybrid Platform -- 11.5 Performance.

11.6 Applications -- 11.7 Conclusion -- Acknowledgement -- References -- Chapter 12: GPU Acceleration of Second-Order Møller-Plesset Perturbation Theory with Resolution of Identity -- 12.1 Møller-Plesset Perturbation Theory with Resolution of Identity Approximation (RI-MP2) -- 12.2 A Mixed-Precision Matrix Multiplication Library -- 12.3 Performance of Accelerated RI-MP2 -- 12.4 Example Applications -- 12.5 Conclusions -- References -- Chapter 13: Iterative Coupled-Cluster Methods on Graphics Processing Units -- 13.1 Introduction -- 13.2 Related Work -- 13.3 Theory -- 13.4 Algorithm Details -- 13.5 Computational Details -- 13.6 Results -- 13.7 Conclusions -- Acknowledgments -- References -- Chapter 14: Perturbative Coupled-Cluster Methods on Graphics Processing Units: Single- and Multi-Reference Formulations -- 14.1 Introduction -- 14.2 Overview of Electronic Structure Methods -- 14.3 NWChem Software Architecture -- 14.4 GPU Implementation -- 14.5 Performance -- 14.6 Outlook -- Acknowledgments -- References -- Scientific Index -- Technical Index -- End User License Agreement.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: